/* $Id: pgalloc.h,v 1.1 2000/02/04 07:40:53 ralf Exp $ * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 2000 by Ralf Baechle at alii * Copyright (C) 1999, 2000 Silicon Graphics, Inc. */ #ifndef _ASM_PGALLOC_H #define _ASM_PGALLOC_H /* Cache flushing: * * - flush_cache_all() flushes entire cache * - flush_cache_mm(mm) flushes the specified mm context's cache lines * - flush_cache_page(mm, vmaddr) flushes a single page * - flush_cache_range(mm, start, end) flushes a range of pages * - flush_page_to_ram(page) write back kernel page to ram */ extern void (*flush_cache_all)(void); extern void (*flush_cache_mm)(struct mm_struct *mm); extern void (*flush_cache_range)(struct mm_struct *mm, unsigned long start, unsigned long end); extern void (*flush_cache_page)(struct vm_area_struct *vma, unsigned long page); extern void (*flush_cache_sigtramp)(unsigned long addr); extern void (*flush_page_to_ram)(struct page * page); #define flush_icache_range(start, end) flush_cache_all() /* TLB flushing: * * - flush_tlb_all() flushes all processes TLB entries * - flush_tlb_mm(mm) flushes the specified mm context TLB entries * - flush_tlb_page(mm, vmaddr) flushes a single page * - flush_tlb_range(mm, start, end) flushes a range of pages */ extern void flush_tlb_all(void); extern void flush_tlb_mm(struct mm_struct *mm); extern void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end); extern void flush_tlb_page(struct vm_area_struct *vma, unsigned long page); /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */ #define pgd_quicklist (current_cpu_data.pgd_quick) #define pmd_quicklist ((unsigned long *)0) #define pte_quicklist (current_cpu_data.pte_quick) #define pgtable_cache_size (current_cpu_data.pgtable_cache_sz) extern __inline__ pgd_t *get_pgd_slow(void) { pgd_t *ret = (pgd_t *)__get_free_page(GFP_KERNEL), *init; if (ret) { init = pgd_offset(&init_mm, 0); pgd_init((unsigned long)ret); memcpy (ret + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); } return ret; } extern __inline__ pgd_t *get_pgd_fast(void) { unsigned long *ret; if((ret = pgd_quicklist) != NULL) { pgd_quicklist = (unsigned long *)(*ret); ret[0] = ret[1]; pgtable_cache_size--; } else ret = (unsigned long *)get_pgd_slow(); return (pgd_t *)ret; } extern __inline__ void free_pgd_fast(pgd_t *pgd) { *(unsigned long *)pgd = (unsigned long) pgd_quicklist; pgd_quicklist = (unsigned long *) pgd; pgtable_cache_size++; } extern __inline__ void free_pgd_slow(pgd_t *pgd) { free_page((unsigned long)pgd); } extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted); extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted); extern __inline__ pte_t *get_pte_fast(void) { unsigned long *ret; if((ret = (unsigned long *)pte_quicklist) != NULL) { pte_quicklist = (unsigned long *)(*ret); ret[0] = ret[1]; pgtable_cache_size--; } return (pte_t *)ret; } extern __inline__ void free_pte_fast(pte_t *pte) { *(unsigned long *)pte = (unsigned long) pte_quicklist; pte_quicklist = (unsigned long *) pte; pgtable_cache_size++; } extern __inline__ void free_pte_slow(pte_t *pte) { free_page((unsigned long)pte); } /* We don't use pmd cache, so these are dummy routines */ extern __inline__ pmd_t *get_pmd_fast(void) { return (pmd_t *)0; } extern __inline__ void free_pmd_fast(pmd_t *pmd) { } extern __inline__ void free_pmd_slow(pmd_t *pmd) { } extern void __bad_pte(pmd_t *pmd); extern void __bad_pte_kernel(pmd_t *pmd); #define pte_free_kernel(pte) free_pte_fast(pte) #define pte_free(pte) free_pte_fast(pte) #define pgd_free(pgd) free_pgd_fast(pgd) #define pgd_alloc() get_pgd_fast() extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t *page = get_pte_fast(); if (page) { pmd_val(*pmd) = (unsigned long)page; return page + address; } return get_pte_kernel_slow(pmd, address); } if (pmd_bad(*pmd)) { __bad_pte_kernel(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t *page = get_pte_fast(); if (page) { pmd_val(*pmd) = (unsigned long)page; return page + address; } return get_pte_slow(pmd, address); } if (pmd_bad(*pmd)) { __bad_pte(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free(pmd_t * pmd) { } extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } #define pmd_free_kernel pmd_free #define pmd_alloc_kernel pmd_alloc extern int do_check_pgt_cache(int, int); extern inline void set_pgdir(unsigned long address, pgd_t entry) { struct task_struct * p; pgd_t *pgd; #ifdef __SMP__ int i; #endif read_lock(&tasklist_lock); for_each_task(p) { if (!p->mm) continue; *pgd_offset(p->mm,address) = entry; } read_unlock(&tasklist_lock); #ifndef __SMP__ for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd) pgd[address >> PGDIR_SHIFT] = entry; #else /* To pgd_alloc/pgd_free, one holds master kernel lock and so does our callee, so we can modify pgd caches of other CPUs as well. -jj */ for (i = 0; i < NR_CPUS; i++) for (pgd = (pgd_t *)cpu_data[i].pgd_quick; pgd; pgd = (pgd_t *)*(unsigned long *)pgd) pgd[address >> PGDIR_SHIFT] = entry; #endif } #endif /* _ASM_PGALLOC_H */