#ifndef __ASM_MIPS_PGTABLE_H #define __ASM_MIPS_PGTABLE_H #include #include #ifndef __LANGUAGE_ASSEMBLY__ #include #include /* Cache flushing: * * - flush_cache_all() flushes entire cache * - flush_cache_mm(mm) flushes the specified mm context's cache lines * - flush_cache_page(mm, vmaddr) flushes a single page * - flush_cache_range(mm, start, end) flushes a range of pages * - flush_page_to_ram(page) write back kernel page to ram */ extern void (*flush_cache_all)(void); extern void (*flush_cache_mm)(struct mm_struct *mm); extern void (*flush_cache_range)(struct mm_struct *mm, unsigned long start, unsigned long end); extern void (*flush_cache_page)(struct vm_area_struct *vma, unsigned long page); extern void (*flush_cache_sigtramp)(unsigned long addr); extern void (*flush_page_to_ram)(unsigned long page); /* TLB flushing: * * - flush_tlb_all() flushes all processes TLB entries * - flush_tlb_mm(mm) flushes the specified mm context TLB entries * - flush_tlb_page(mm, vmaddr) flushes a single page * - flush_tlb_range(mm, start, end) flushes a range of pages */ extern void (*flush_tlb_all)(void); extern void (*flush_tlb_mm)(struct mm_struct *mm); extern void (*flush_tlb_range)(struct mm_struct *mm, unsigned long start, unsigned long end); extern void (*flush_tlb_page)(struct vm_area_struct *vma, unsigned long page); /* Basically we have the same two-level (which is the logical three level * Linux page table layout folded) page tables as the i386. Some day * when we have proper page coloring support we can have a 1% quicker * tlb refill handling mechanism, but for now it is a bit slower but * works even with the cache aliasing problem the R4k and above have. */ #endif /* !defined (__LANGUAGE_ASSEMBLY__) */ /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT 22 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 22 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* Entries per page directory level: we use two-level, so * we don't really have any PMD directory physically. */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PMD 1 #define PTRS_PER_PGD 1024 #define VMALLOC_START KSEG2 #define VMALLOC_VMADDR(x) ((unsigned long)(x)) /* Note that we shift the lower 32bits of each EntryLo[01] entry * 6 bits to the left. That way we can convert the PFN into the * physical address by a single 'and' operation and gain 6 additional * bits for storing information which isn't present in a normal * MIPS page table. * * Similar to the Alpha port, we need to keep track of the ref * and mod bits in software. We have a software "yeah you can read * from this page" bit, and a hardware one which actually lets the * process read from the page. On the same token we have a software * writable bit and the real hardware one which actually lets the * process write to the page, this keeps a mod bit via the hardware * dirty bit. * * Certain revisions of the R4000 and R5000 have a bug where if a * certain sequence occurs in the last 3 instructions of an executable * page, and the following page is not mapped, the cpu can do * unpredictable things. The code (when it is written) to deal with * this problem will be in the update_mmu_cache() code for the r4k. */ #define _PAGE_PRESENT (1<<0) /* implemented in software */ #define _PAGE_READ (1<<1) /* implemented in software */ #define _PAGE_WRITE (1<<2) /* implemented in software */ #define _PAGE_ACCESSED (1<<3) /* implemented in software */ #define _PAGE_MODIFIED (1<<4) /* implemented in software */ #define _PAGE_R4KBUG (1<<5) /* workaround for r4k bug */ #define _PAGE_GLOBAL (1<<6) #define _PAGE_VALID (1<<7) #define _PAGE_SILENT_READ (1<<7) /* synonym */ #define _PAGE_DIRTY (1<<8) /* The MIPS dirty bit */ #define _PAGE_SILENT_WRITE (1<<8) #define _CACHE_CACHABLE_NO_WA (0<<9) /* R4600 only */ #define _CACHE_CACHABLE_WA (1<<9) /* R4600 only */ #define _CACHE_UNCACHED (2<<9) /* R4[0246]00 */ #define _CACHE_CACHABLE_NONCOHERENT (3<<9) /* R4[0246]00 */ #define _CACHE_CACHABLE_CE (4<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_COW (5<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_CUW (6<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_ACCELERATED (7<<9) /* R10000 only */ #define _CACHE_MASK (7<<9) #define __READABLE (_PAGE_READ | _PAGE_SILENT_READ | _PAGE_ACCESSED) #define __WRITEABLE (_PAGE_WRITE | _PAGE_SILENT_WRITE | _PAGE_MODIFIED) #define _PAGE_CHG_MASK (PAGE_MASK | __READABLE | __WRITEABLE | _CACHE_MASK) #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ _CACHE_CACHABLE_NONCOHERENT) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _CACHE_CACHABLE_NONCOHERENT) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | \ _CACHE_CACHABLE_NONCOHERENT) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | \ _CACHE_CACHABLE_NONCOHERENT) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \ _CACHE_CACHABLE_NONCOHERENT) #define PAGE_USERIO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _CACHE_UNCACHED) /* * MIPS can't do page protection for execute, and considers that the same like * read. Also, write permissions imply read permissions. This is the closest * we can get by reasonable means.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED #if !defined (__LANGUAGE_ASSEMBLY__) /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t *__bad_pagetable(void); extern unsigned long __zero_page(void); extern unsigned long empty_zero_page[1024]; #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE ((unsigned long)empty_zero_page) /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* * sizeof(void*) == (1 << SIZEOF_PTR_LOG2) */ #define SIZEOF_PTR_LOG2 2 /* to find an entry in a page-table */ #define PAGE_PTR(address) \ ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) extern void (*load_pgd)(unsigned long pg_dir); /* to set the page-dir */ #define SET_PAGE_DIR(tsk,pgdir) (tsk)->tss.pg_dir = ((unsigned long) (pgdir)) extern pmd_t invalid_pte_table[PAGE_SIZE/sizeof(pmd_t)]; /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline unsigned long pte_page(pte_t pte) { return PAGE_OFFSET + (pte_val(pte) & PAGE_MASK); } extern inline unsigned long pmd_page(pmd_t pmd) { return pmd_val(pmd); } extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) { pmd_val(*pmdp) = (((unsigned long) ptep) & PAGE_MASK); } extern inline int pte_none(pte_t pte) { return !pte_val(pte); } extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } /* Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ extern inline void set_pte(pte_t *ptep, pte_t pteval) { *ptep = pteval; } extern inline void pte_clear(pte_t *ptep) { set_pte(ptep, __pte(0)); } /* * Empty pgd/pmd entries point to the invalid_pte_table. */ extern inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) == (unsigned long) invalid_pte_table; } extern inline int pmd_bad(pmd_t pmd) { return ((pmd_page(pmd) > (unsigned long) high_memory) || (pmd_page(pmd) < PAGE_OFFSET)); } extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd); } extern inline void pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = ((unsigned long) invalid_pte_table); } /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */ extern inline int pgd_none(pgd_t pgd) { return 0; } extern inline int pgd_bad(pgd_t pgd) { return 0; } extern inline int pgd_present(pgd_t pgd) { return 1; } extern inline void pgd_clear(pgd_t *pgdp) { } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); return pte; } extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_MODIFIED|_PAGE_SILENT_WRITE); return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ); return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; if (pte_val(pte) & _PAGE_MODIFIED) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; if (pte_val(pte) & _PAGE_ACCESSED) pte_val(pte) |= _PAGE_SILENT_READ; return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_MODIFIED; if (pte_val(pte) & _PAGE_WRITE) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; if (pte_val(pte) & _PAGE_READ) pte_val(pte) |= _PAGE_SILENT_READ; return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot) { return __pte(((page & PAGE_MASK) - PAGE_OFFSET) | pgprot_val(pgprot)); } extern inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { return __pte((physpage - PAGE_OFFSET) | pgprot_val(pgprot)); } extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); } /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* to find an entry in a page-table-directory */ extern inline pgd_t *pgd_offset(struct mm_struct *mm, unsigned long address) { return mm->pgd + (address >> PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ extern inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ extern inline pte_t *pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) (pmd_page(*dir)) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */ extern inline void pte_free_kernel(pte_t *pte) { free_page((unsigned long) pte); } extern const char bad_pmd_string[]; extern inline pte_t *pte_alloc_kernel(pmd_t *pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t *page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { pmd_set(pmd, page); return page + address; } pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk(bad_pmd_string, pmd_val(*pmd)); pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free_kernel(pmd_t *pmd) { pmd_val(*pmd) = ((unsigned long) invalid_pte_table); } extern inline pmd_t *pmd_alloc_kernel(pgd_t *pgd, unsigned long address) { return (pmd_t *) pgd; } extern inline void pte_free(pte_t *pte) { free_page((unsigned long) pte); } extern inline pte_t *pte_alloc(pmd_t *pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t *page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { pmd_set(pmd, page); return page + address; } pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk(bad_pmd_string, pmd_val(*pmd)); pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free(pmd_t *pmd) { pmd_val(*pmd) = ((unsigned long) invalid_pte_table); } extern inline pmd_t *pmd_alloc(pgd_t *pgd, unsigned long address) { return (pmd_t *) pgd; } extern inline void pgd_free(pgd_t *pgd) { free_page((unsigned long) pgd); } /* * Initialize new page directory with pointers to invalid ptes */ extern void (*pgd_init)(unsigned long page); extern inline pgd_t *pgd_alloc(void) { unsigned long page; if(!(page = __get_free_page(GFP_KERNEL))) return NULL; pgd_init(page); return (pgd_t *) page; } extern pgd_t swapper_pg_dir[1024]; extern void (*update_mmu_cache)(struct vm_area_struct *vma, unsigned long address, pte_t pte); /* * Kernel with 32 bit address space */ #define SWP_TYPE(entry) (((entry) >> 8) & 0x7f) #define SWP_OFFSET(entry) ((entry) >> 15) #define SWP_ENTRY(type,offset) (((type) << 8) | ((offset) << 15)) #define module_map vmalloc #define module_unmap vfree /* TLB operations. */ extern inline void tlb_probe(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbp\n\t" ".set reorder"); } extern inline void tlb_read(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbr\n\t" ".set reorder"); } extern inline void tlb_write_indexed(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbwi\n\t" ".set reorder"); } extern inline void tlb_write_random(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbwr\n\t" ".set reorder"); } /* Dealing with various CP0 mmu/cache related registers. */ /* CP0_PAGEMASK register */ extern inline unsigned long get_pagemask(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mfc0 %0, $5\n\t" ".set mips0\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_pagemask(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mtc0 %0, $5\n\t" ".set mips0\n\t" ".set reorder" : : "r" (val)); } /* CP0_ENTRYLO0 and CP0_ENTRYLO1 registers */ extern inline unsigned long get_entrylo0(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mfc0 %0, $2\n\t" ".set mips0\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_entrylo0(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mtc0 %0, $2\n\t" ".set mips0\n\t" ".set reorder" : : "r" (val)); } extern inline unsigned long get_entrylo1(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mfc0 %0, $3\n\t" ".set mips0\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_entrylo1(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mtc0 %0, $3\n\t" ".set mips0\n\t" ".set reorder" : : "r" (val)); } /* CP0_ENTRYHI register */ extern inline unsigned long get_entryhi(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mfc0 %0, $10\n\t" ".set mips0\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_entryhi(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mtc0 %0, $10\n\t" ".set mips0\n\t" ".set reorder" : : "r" (val)); } /* CP0_INDEX register */ extern inline unsigned long get_index(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mfc0 %0, $0\n\t" ".set mips0\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_index(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mtc0 %0, $0\n\t" ".set mips0\n\t" ".set reorder\n\t" : : "r" (val)); } /* CP0_WIRED register */ extern inline unsigned long get_wired(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mfc0 %0, $6\n\t" ".set mips0\n\t" ".set reorder\n\t" : "=r" (val)); return val; } extern inline void set_wired(unsigned long val) { __asm__ __volatile__( "\n\t.set noreorder\n\t" ".set mips3\n\t" "mtc0 %0, $6\n\t" ".set mips0\n\t" ".set reorder" : : "r" (val)); } /* CP0_TAGLO and CP0_TAGHI registers */ extern inline unsigned long get_taglo(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mfc0 %0, $28\n\t" ".set mips0\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_taglo(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mtc0 %0, $28\n\t" ".set mips0\n\t" ".set reorder" : : "r" (val)); } extern inline unsigned long get_taghi(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mfc0 %0, $29\n\t" ".set mips0\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_taghi(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mtc0 %0, $29\n\t" ".set mips0\n\t" ".set reorder" : : "r" (val)); } /* CP0_CONTEXT register */ extern inline unsigned long get_context(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mfc0 %0, $4\n\t" ".set mips0\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_context(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" ".set mips3\n\t" "mtc0 %0, $4\n\t" ".set mips0\n\t" ".set reorder" : : "r" (val)); } #endif /* !defined (__LANGUAGE_ASSEMBLY__) */ #endif /* __ASM_MIPS_PGTABLE_H */