/* $Id: pgtable.h,v 1.14 2000/03/02 02:37:13 ralf Exp $ * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 1999 by Ralf Baechle at alii * Copyright (C) 1999 Silicon Graphics, Inc. */ #ifndef _ASM_PGTABLE_H #define _ASM_PGTABLE_H #include #include #ifndef _LANGUAGE_ASSEMBLY #include #include #include #include /* Cache flushing: * * - flush_cache_all() flushes entire cache * - flush_cache_mm(mm) flushes the specified mm context's cache lines * - flush_cache_page(mm, vmaddr) flushes a single page * - flush_cache_range(mm, start, end) flushes a range of pages * - flush_page_to_ram(page) write back kernel page to ram */ extern void (*_flush_cache_all)(void); extern void (*_flush_cache_mm)(struct mm_struct *mm); extern void (*_flush_cache_range)(struct mm_struct *mm, unsigned long start, unsigned long end); extern void (*_flush_cache_page)(struct vm_area_struct *vma, unsigned long page); extern void (*_flush_cache_sigtramp)(unsigned long addr); extern void (*_flush_page_to_ram)(struct page * page); #define flush_cache_all() _flush_cache_all() #define flush_cache_mm(mm) _flush_cache_mm(mm) #define flush_cache_range(mm,start,end) _flush_cache_range(mm,start,end) #define flush_cache_page(vma,page) _flush_cache_page(vma, page) #define flush_cache_sigtramp(addr) _flush_cache_sigtramp(addr) #define flush_page_to_ram(page) _flush_page_to_ram(page) #define flush_icache_range(start, end) flush_cache_all() #define flush_icache_page(start, page) do { } while(0) /* Basically we have the same two-level (which is the logical three level * Linux page table layout folded) page tables as the i386. Some day * when we have proper page coloring support we can have a 1% quicker * tlb refill handling mechanism, but for now it is a bit slower but * works even with the cache aliasing problem the R4k and above have. */ #endif /* !defined (_LANGUAGE_ASSEMBLY) */ /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT (PMD_SHIFT + (PAGE_SHIFT + 1 - 3)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* Entries per page directory level: we use two-level, so we don't really have any PMD directory physically. */ #define PTRS_PER_PGD 1024 #define PTRS_PER_PMD 1024 #define PTRS_PER_PTE 512 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) #define FIRST_USER_PGD_NR 0 #define VMALLOC_START XKSEG #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END (KSEG3 + (1UL << 40)) /* 1 TB */ /* Note that we shift the lower 32bits of each EntryLo[01] entry * 6 bits to the left. That way we can convert the PFN into the * physical address by a single 'and' operation and gain 6 additional * bits for storing information which isn't present in a normal * MIPS page table. * * Similar to the Alpha port, we need to keep track of the ref * and mod bits in software. We have a software "yeah you can read * from this page" bit, and a hardware one which actually lets the * process read from the page. On the same token we have a software * writable bit and the real hardware one which actually lets the * process write to the page, this keeps a mod bit via the hardware * dirty bit. * * Certain revisions of the R4000 and R5000 have a bug where if a * certain sequence occurs in the last 3 instructions of an executable * page, and the following page is not mapped, the cpu can do * unpredictable things. The code (when it is written) to deal with * this problem will be in the update_mmu_cache() code for the r4k. */ #define _PAGE_PRESENT (1<<0) /* implemented in software */ #define _PAGE_READ (1<<1) /* implemented in software */ #define _PAGE_WRITE (1<<2) /* implemented in software */ #define _PAGE_ACCESSED (1<<3) /* implemented in software */ #define _PAGE_MODIFIED (1<<4) /* implemented in software */ #define _PAGE_R4KBUG (1<<5) /* workaround for r4k bug */ #define _PAGE_GLOBAL (1<<6) #define _PAGE_VALID (1<<7) #define _PAGE_SILENT_READ (1<<7) /* synonym */ #define _PAGE_DIRTY (1<<8) /* The MIPS dirty bit */ #define _PAGE_SILENT_WRITE (1<<8) #define _CACHE_CACHABLE_NO_WA (0<<9) /* R4600 only */ #define _CACHE_CACHABLE_WA (1<<9) /* R4600 only */ #define _CACHE_UNCACHED (2<<9) /* R4[0246]00 */ #define _CACHE_CACHABLE_NONCOHERENT (3<<9) /* R4[0246]00 */ #define _CACHE_CACHABLE_CE (4<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_COW (5<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_CUW (6<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_ACCELERATED (7<<9) /* R10000 only */ #define _CACHE_MASK (7<<9) #define __READABLE (_PAGE_READ | _PAGE_SILENT_READ | _PAGE_ACCESSED) #define __WRITEABLE (_PAGE_WRITE | _PAGE_SILENT_WRITE | _PAGE_MODIFIED) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_MODIFIED | _CACHE_MASK) #define PAGE_NONE __pgprot(_PAGE_PRESENT | _CACHE_CACHABLE_COW) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _CACHE_CACHABLE_COW) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | \ _CACHE_CACHABLE_COW) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | \ _CACHE_CACHABLE_COW) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \ _CACHE_CACHABLE_COW) #define PAGE_USERIO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _CACHE_UNCACHED) #define PAGE_KERNEL_UNCACHED __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \ _CACHE_UNCACHED) /* * MIPS can't do page protection for execute, and considers that the same like * read. Also, write permissions imply read permissions. This is the closest * we can get by reasonable means.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED #if !defined (_LANGUAGE_ASSEMBLY) #define pte_ERROR(e) \ printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t *__bad_pagetable(void); extern pmd_t *__bad_pmd_table(void); extern unsigned long empty_zero_page; extern unsigned long zero_page_mask; #define BAD_PAGETABLE __bad_pagetable() #define BAD_PMDTABLE __bad_pmd_table() #define BAD_PAGE __bad_page() #define ZERO_PAGE(vaddr) \ (mem_map + MAP_NR(empty_zero_page + (((unsigned long)(vaddr)) & zero_page_mask))) /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* * sizeof(void*) == (1 << SIZEOF_PTR_LOG2) */ #define SIZEOF_PTR_LOG2 3 /* to find an entry in a page-table */ #define PAGE_PTR(address) \ ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) extern pte_t invalid_pte_table[2*PAGE_SIZE/sizeof(pte_t)]; extern pmd_t invalid_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)]; /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline unsigned long pte_page(pte_t pte) { return PAGE_OFFSET + (pte_val(pte) & PAGE_MASK); } extern inline unsigned long pmd_page(pmd_t pmd) { return pmd_val(pmd); } extern inline unsigned long pgd_page(pgd_t pgd) { return pgd_val(pgd); } extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) { pmd_val(*pmdp) = (((unsigned long) ptep) & PAGE_MASK); } extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp) { pgd_val(*pgdp) = (((unsigned long) pmdp) & PAGE_MASK); } extern inline int pte_none(pte_t pte) { return !pte_val(pte); } extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } /* Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ extern inline void set_pte(pte_t *ptep, pte_t pteval) { *ptep = pteval; } extern inline void pte_clear(pte_t *ptep) { set_pte(ptep, __pte(0)); } /* * Empty pmd entries point to the invalid_pte_table. */ extern inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) == (unsigned long) invalid_pte_table; } extern inline int pmd_bad(pmd_t pmd) { return ((pmd_page(pmd) > (unsigned long) high_memory) || (pmd_page(pmd) < PAGE_OFFSET)); } extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) != (unsigned long) invalid_pte_table; } extern inline void pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = ((unsigned long) invalid_pte_table); } /* * Empty pgd entries point to the invalid_pmd_table. */ extern inline int pgd_none(pgd_t pgd) { return pgd_val(pgd) == (unsigned long) invalid_pmd_table; } extern inline int pgd_bad(pgd_t pgd) { return ((pgd_page(pgd) > (unsigned long) high_memory) || (pgd_page(pgd) < PAGE_OFFSET)); } extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) != (unsigned long) invalid_pmd_table; } extern inline void pgd_clear(pgd_t *pgdp) { pgd_val(*pgdp) = ((unsigned long) invalid_pmd_table); } /* * Permanent address of a page. On MIPS64 we never have highmem, so this * is simple. * called on a highmem page. */ #define page_address(page) ((page)->virtual) #ifndef CONFIG_DISCONTIGMEM #define pte_pagenr(x) ((unsigned long)((pte_val(x) >> PAGE_SHIFT))) #else #define pte_pagenr(x) \ (PLAT_NODE_DATA_STARTNR(PHYSADDR_TO_NID(pte_val(x))) + \ PLAT_NODE_DATA_LOCALNR(pte_val(x), PHYSADDR_TO_NID(pte_val(x)))) #endif #define pte_page(x) (mem_map+pte_pagenr(x)) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); return pte; } extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_MODIFIED|_PAGE_SILENT_WRITE); return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ); return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; if (pte_val(pte) & _PAGE_MODIFIED) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; if (pte_val(pte) & _PAGE_ACCESSED) pte_val(pte) |= _PAGE_SILENT_READ; return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_MODIFIED; if (pte_val(pte) & _PAGE_WRITE) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; if (pte_val(pte) & _PAGE_READ) pte_val(pte) |= _PAGE_SILENT_READ; return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #ifndef CONFIG_DISCONTIGMEM #define PAGE_TO_PA(page) ((page - mem_map) << PAGE_SHIFT) #else #define PAGE_TO_PA(page) \ ((((page)-(page)->zone->zone_mem_map) << PAGE_SHIFT) \ + ((page)->zone->zone_start_paddr)) #endif #define mk_pte(page, pgprot) \ ({ \ pte_t __pte; \ \ pte_val(__pte) = ((unsigned long)(PAGE_TO_PA(page))) | \ pgprot_val(pgprot); \ \ __pte; \ }) extern inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { return __pte(physpage | pgprot_val(pgprot)); } extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); } #define page_pte(page) page_pte_prot(page, __pgprot(0)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) /* to find an entry in a page-table-directory */ extern inline pgd_t *pgd_offset(struct mm_struct *mm, unsigned long address) { return mm->pgd + pgd_index(address); } /* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); } /* Find an entry in the third-level page table.. */ extern inline pte_t *pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) (pmd_page(*dir)) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } /* * Initialize a new pgd / pmd table with invalid pointers. */ extern void pte_init(unsigned long page); extern void pgd_init(unsigned long page); extern void pmd_init(unsigned long page); extern pgd_t swapper_pg_dir[1024]; extern void paging_init(void); extern void (*update_mmu_cache)(struct vm_area_struct *vma, unsigned long address, pte_t pte); /* * Non-present pages: high 24 bits are offset, next 8 bits type, * low 32 bits zero. */ extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; } #define SWP_TYPE(x) (((x).val >> 32) & 0xff) #define SWP_OFFSET(x) ((x).val >> 40) #define SWP_ENTRY(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val }) #define module_map vmalloc #define module_unmap vfree /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) test_bit(PG_skip, &(page)->flags) #ifndef CONFIG_DISCONTIGMEM #define kern_addr_valid(addr) (1) #endif /* TLB operations. */ extern inline void tlb_probe(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbp\n\t" ".set reorder"); } extern inline void tlb_read(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbr\n\t" ".set reorder"); } extern inline void tlb_write_indexed(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbwi\n\t" ".set reorder"); } extern inline void tlb_write_random(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbwr\n\t" ".set reorder"); } /* Dealing with various CP0 mmu/cache related registers. */ /* CP0_PAGEMASK register */ extern inline unsigned long get_pagemask(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" "mfc0 %0, $5\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_pagemask(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "mtc0 %0, $5\n\t" ".set reorder" : : "r" (val)); } /* CP0_ENTRYLO0 and CP0_ENTRYLO1 registers */ extern inline unsigned long get_entrylo0(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" "dmfc0 %0, $2\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_entrylo0(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "dmtc0 %0, $2\n\t" ".set reorder" : : "r" (val)); } extern inline unsigned long get_entrylo1(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" "dmfc0 %0, $3\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_entrylo1(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "dmtc0 %0, $3\n\t" ".set reorder" : : "r" (val)); } /* CP0_ENTRYHI register */ extern inline unsigned long get_entryhi(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" "dmfc0 %0, $10\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_entryhi(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "dmtc0 %0, $10\n\t" ".set reorder" : : "r" (val)); } /* CP0_INDEX register */ extern inline unsigned int get_index(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" "mfc0 %0, $0\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_index(unsigned int val) { __asm__ __volatile__( ".set noreorder\n\t" "mtc0 %0, $0\n\t" ".set reorder\n\t" : : "r" (val)); } /* CP0_WIRED register */ extern inline unsigned long get_wired(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" "mfc0 %0, $6\n\t" ".set reorder\n\t" : "=r" (val)); return val; } extern inline void set_wired(unsigned long val) { __asm__ __volatile__( "\n\t.set noreorder\n\t" "mtc0 %0, $6\n\t" ".set reorder" : : "r" (val)); } /* CP0_TAGLO and CP0_TAGHI registers */ extern inline unsigned long get_taglo(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" "mfc0 %0, $28\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_taglo(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "mtc0 %0, $28\n\t" ".set reorder" : : "r" (val)); } extern inline unsigned long get_taghi(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" "mfc0 %0, $29\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_taghi(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "mtc0 %0, $29\n\t" ".set reorder" : : "r" (val)); } /* CP0_CONTEXT register */ extern inline unsigned long get_context(void) { unsigned long val; __asm__ __volatile__( ".set noreorder\n\t" "mfc0 %0, $4\n\t" ".set reorder" : "=r" (val)); return val; } extern inline void set_context(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "mtc0 %0, $4\n\t" ".set reorder" : : "r" (val)); } #endif /* !defined (_LANGUAGE_ASSEMBLY) */ #endif /* _ASM_PGTABLE_H */