#ifndef _PPC_PGTABLE_H #define _PPC_PGTABLE_H #include extern void flush_tlb_all(void); extern void flush_tlb_mm(struct mm_struct *mm); extern void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr); extern void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end); /* * No cache flushing is required when address mappings are * changed, because the caches on PowerPCs are physically * addressed. */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, a, b) do { } while (0) #define flush_cache_page(vma, p) do { } while (0) extern void flush_icache_range(unsigned long, unsigned long); /* * For the page specified, write modified lines in the data cache * out to memory, and invalidate lines in the instruction cache. */ extern void flush_page_to_ram(unsigned long); extern unsigned long va_to_phys(unsigned long address); /* * The PowerPC MMU uses a hash table containing PTEs, together with * a set of 16 segment registers (on 32-bit implementations), to define * the virtual to physical address mapping. * * We use the hash table as an extended TLB, i.e. a cache of currently * active mappings. We maintain a two-level page table tree, much like * that used by the i386, for the sake of the Linux memory management code. * Low-level assembler code in head.S (procedure hash_page) is responsible * for extracting ptes from the tree and putting them into the hash table * when necessary, and updating the accessed and modified bits in the * page table tree. */ /* PMD_SHIFT determines the size of the area mapped by the second-level page tables */ #define PMD_SHIFT 22 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 22 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: our page-table tree is two-level, so * we don't really have any PMD directory. */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PMD 1 #define PTRS_PER_PGD 1024 /* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_OFFSET (0x2000000) /* 32M */ #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) /* * Bits in a linux-style PTE. These match the bits in the * (hardware-defined) PowerPC PTE as closely as possible. */ #define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ #define _PAGE_USER 0x002 /* matches one of the PP bits */ #define _PAGE_RW 0x004 /* software: user write access allowed */ #define _PAGE_GUARDED 0x008 #define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ #define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ #define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ #define _PAGE_DIRTY 0x080 /* C: page changed */ #define _PAGE_ACCESSED 0x100 /* R: page referenced */ #define _PAGE_HWWRITE 0x200 /* software: _PAGE_RW & _PAGE_DIRTY */ #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \ _PAGE_ACCESSED) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | \ _PAGE_HWWRITE | _PAGE_ACCESSED) #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_NO_CACHE | _PAGE_RW | \ _PAGE_HWWRITE | _PAGE_DIRTY | _PAGE_ACCESSED) /* * The PowerPC can only do execute protection on a segment (256MB) basis, * not on a page basis. So we consider execute permission the same as read. * Also, write permissions imply read permissions. * This is the closest we can get.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t * __bad_pagetable(void); extern unsigned long empty_zero_page[1024]; #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE ((unsigned long) empty_zero_page) /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* sizeof(void*) == 1<pgd + (address >> PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table, but are actually identical * to the xxx() versions. */ extern inline void pte_free_kernel(pte_t * pte) { free_page((unsigned long) pte); } extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t * page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { pmd_val(*pmd) = (unsigned long) page; return page + address; } pmd_val(*pmd) = (unsigned long) BAD_PAGETABLE; return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_val(*pmd) = (unsigned long) BAD_PAGETABLE; return NULL; } return (pte_t *) pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free_kernel(pmd_t * pmd) { } extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } extern inline void pte_free(pte_t * pte) { free_page((unsigned long) pte); } extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t * page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { pmd_val(*pmd) = (unsigned long) page; return page + address; } pmd_val(*pmd) = (unsigned long) BAD_PAGETABLE; return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_val(*pmd) = (unsigned long) BAD_PAGETABLE; return NULL; } return (pte_t *) pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free(pmd_t * pmd) { } extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } extern inline void pgd_free(pgd_t * pgd) { free_page((unsigned long) pgd); } extern inline pgd_t * pgd_alloc(void) { return (pgd_t *) get_free_page(GFP_KERNEL); } extern pgd_t swapper_pg_dir[1024]; /* * Page tables may have changed. We don't need to do anything here * as entries are faulted into the hash table by the low-level * data/instruction access exception handlers. */ #define update_mmu_cache(vma, addr, pte) do { } while (0) /* * When flushing the tlb entry for a page, we also need to flush the * hash table entry. flush_hash_page is assembler (for speed) in head.S. */ extern void flush_hash_segments(unsigned low_vsid, unsigned high_vsid); extern void flush_hash_page(unsigned context, unsigned long va); extern inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) { if (vmaddr < TASK_SIZE) flush_hash_page(vma->vm_mm->context, vmaddr); } #define SWP_TYPE(entry) (((entry) >> 1) & 0x7f) #define SWP_OFFSET(entry) ((entry) >> 8) #define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8)) #define module_map vmalloc #define module_unmap vfree #endif /* _PPC_PGTABLE_H */