#ifndef __ASM_SH_BITOPS_H #define __ASM_SH_BITOPS_H #ifdef __KERNEL__ #include /* For __swab32 */ #include extern __inline__ void set_bit(int nr, void * addr) { int mask; unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); *a |= mask; restore_flags(flags); } extern __inline__ void clear_bit(int nr, void * addr) { int mask; unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); *a &= ~mask; restore_flags(flags); } extern __inline__ void change_bit(int nr, void * addr) { int mask; unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); *a ^= mask; restore_flags(flags); } extern __inline__ int test_and_set_bit(int nr, void * addr) { int mask, retval; unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); retval = (mask & *a) != 0; *a |= mask; restore_flags(flags); return retval; } extern __inline__ int test_and_clear_bit(int nr, void * addr) { int mask, retval; unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); retval = (mask & *a) != 0; *a &= ~mask; restore_flags(flags); return retval; } extern __inline__ int test_and_change_bit(int nr, void * addr) { int mask, retval; unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); retval = (mask & *a) != 0; *a ^= mask; restore_flags(flags); return retval; } extern __inline__ int test_bit(int nr, const void *addr) { return 1UL & (((const int *) addr)[nr >> 5] >> (nr & 31)); } extern __inline__ unsigned long ffz(unsigned long word) { unsigned long result; __asm__("1:\n" "shlr %1\n\t" "bt/s 1b\n\t" "add #1, %0" : "=r" (result) : "r" (word), "0" (~0L)); return result; } extern __inline__ int find_next_zero_bit(void *addr, int size, int offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (~tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if (~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; found_middle: return result + ffz(tmp); } #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) extern __inline__ int ext2_set_bit(int nr,void * addr) { int mask, retval; unsigned long flags; unsigned char *ADDR = (unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); save_flags(flags); cli(); retval = (mask & *ADDR) != 0; *ADDR |= mask; restore_flags(flags); return retval; } extern __inline__ int ext2_clear_bit(int nr, void * addr) { int mask, retval; unsigned long flags; unsigned char *ADDR = (unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); save_flags(flags); cli(); retval = (mask & *ADDR) != 0; *ADDR &= ~mask; restore_flags(flags); return retval; } extern __inline__ int ext2_test_bit(int nr, const void * addr) { int mask; const unsigned char *ADDR = (const unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); return ((mask & *ADDR) != 0); } #define ext2_find_first_zero_bit(addr, size) \ ext2_find_next_zero_bit((addr), (size), 0) extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if(offset) { /* We hold the little endian value in tmp, but then the * shift is illegal. So we could keep a big endian value * in tmp, like this: * * tmp = __swab32(*(p++)); * tmp |= ~0UL >> (32-offset); * * but this would decrease preformance, so we change the * shift: */ tmp = *(p++); tmp |= __swab32(~0UL >> (32-offset)); if(size < 32) goto found_first; if(~tmp) goto found_middle; size -= 32; result += 32; } while(size & ~31UL) { if(~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if(!size) return result; tmp = *p; found_first: /* tmp is little endian, so we would have to swab the shift, * see above. But then we have to swab tmp below for ffz, so * we might as well do this here. */ return result + ffz(__swab32(tmp) | (~0UL << size)); found_middle: return result + ffz(__swab32(tmp)); } /* Bitmap functions for the minix filesystem. */ #define minix_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __KERNEL__ */ #endif /* __ASM_SH_BITOPS_H */