#ifndef __ASM_SH_IO_H #define __ASM_SH_IO_H /* * Convention: * read{b,w,l}/write{b,w,l} are for PCI, * while in{b,w,l}/out{b,w,l} are for ISA * These may (will) be platform specific function. * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p * and 'string' versions: ins{b,w,l}/outs{b,w,l} * For read{b,w,l} and write{b,w,l} there are also __raw versions, which * do not have a memory barrier after them. * * In addition, we have * ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O. * which are processor specific. */ /* * We follow the Alpha convention here: * __inb expands to an inline function call (which either calls via the * mach_vec if generic, or a machine specific implementation) * _inb is a real function call (note ___raw fns are _ version of __raw) * inb by default expands to _inb, but the machine specif code may * define it to __inb if it chooses. */ #include #include #include /* * Depending on which platform we are running on, we need different * I/O functions. */ #ifdef __KERNEL__ #ifdef CONFIG_SH_GENERIC /* In a generic kernel, we always go through the machine vector. */ #include # define __inb(p) sh_mv.mv_inb((p)) # define __inw(p) sh_mv.mv_inw((p)) # define __inl(p) sh_mv.mv_inl((p)) # define __outb(x,p) sh_mv.mv_outb((x),(p)) # define __outw(x,p) sh_mv.mv_outw((x),(p)) # define __outl(x,p) sh_mv.mv_outl((x),(p)) # define __inb_p(p) sh_mv.mv_inb_p((p)) # define __inw_p(p) sh_mv.mv_inw_p((p)) # define __inl_p(p) sh_mv.mv_inl_p((p)) # define __outb_p(x,p) sh_mv.mv_outb_p((x),(p)) # define __outw_p(x,p) sh_mv.mv_outw_p((x),(p)) # define __outl_p(x,p) sh_mv.mv_outl_p((x),(p)) #define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c)) #define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c)) #define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c)) #define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c)) #define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c)) #define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c)) # define __readb(a) sh_mv.mv_readb((a)) # define __readw(a) sh_mv.mv_readw((a)) # define __readl(a) sh_mv.mv_readl((a)) # define __writeb(v,a) sh_mv.mv_writeb((v),(a)) # define __writew(v,a) sh_mv.mv_writew((v),(a)) # define __writel(v,a) sh_mv.mv_writel((v),(a)) # define __ioremap(a,s) sh_mv.mv_ioremap((a), (s)) # define __ioremap_nocache(a,s) sh_mv.mv_ioremap_nocache((a), (s)) # define __iounmap(a) sh_mv.mv_iounmap((a)) # define __isa_port2addr(a) sh_mv.mv_isa_port2addr(a) # define inb __inb # define inw __inw # define inl __inl # define outb __outb # define outw __outw # define outl __outl # define inb_p __inb_p # define inw_p __inw_p # define inl_p __inl_p # define outb_p __outb_p # define outw_p __outw_p # define outl_p __outl_p # define insb __insb # define insw __insw # define insl __insl # define outsb __outsb # define outsw __outsw # define outsl __outsl # define __raw_readb __readb # define __raw_readw __readw # define __raw_readl __readl # define __raw_writeb __writeb # define __raw_writew __writew # define __raw_writel __writel #else /* Control operations through platform specific headers */ # define __WANT_IO_DEF # if defined(CONFIG_SH_HP600) # include # elif defined(CONFIG_SH_OVERDRIVE) # include # elif defined(CONFIG_SH_SOLUTION_ENGINE) # include # elif defined(CONFIG_SH_UNKNOWN) # include # else # error "What system is this?" #endif #undef __WANT_IO_DEF #endif /* GENERIC */ #endif /* __KERNEL__ */ /* These are always function calls, in both kernel and user space */ extern unsigned int _inb (unsigned long port); extern unsigned int _inw (unsigned long port); extern unsigned int _inl (unsigned long port); extern void _outb (unsigned char b,unsigned long port); extern void _outw (unsigned short w,unsigned long port); extern void _outl (unsigned int l,unsigned long port); extern unsigned int _inb_p (unsigned long port); extern unsigned int _inw_p (unsigned long port); extern unsigned int _inl_p (unsigned long port); extern void _outb_p (unsigned char b,unsigned long port); extern void _outw_p (unsigned short w,unsigned long port); extern void _outl_p (unsigned int l,unsigned long port); extern void _insb (unsigned long port, void *dst, unsigned long count); extern void _insw (unsigned long port, void *dst, unsigned long count); extern void _insl (unsigned long port, void *dst, unsigned long count); extern void _outsb (unsigned long port, const void *src, unsigned long count); extern void _outsw (unsigned long port, const void *src, unsigned long count); extern void _outsl (unsigned long port, const void *src, unsigned long count); extern unsigned long _readb(unsigned long addr); extern unsigned long _readw(unsigned long addr); extern unsigned long _readl(unsigned long addr); extern void _writeb(unsigned char b, unsigned long addr); extern void _writew(unsigned short b, unsigned long addr); extern void _writel(unsigned int b, unsigned long addr); #ifdef __KERNEL__ extern unsigned long ___raw_readb(unsigned long addr); extern unsigned long ___raw_readw(unsigned long addr); extern unsigned long ___raw_readl(unsigned long addr); extern unsigned long ___raw_readq(unsigned long addr); extern void ___raw_writeb(unsigned char b, unsigned long addr); extern void ___raw_writew(unsigned short b, unsigned long addr); extern void ___raw_writel(unsigned int b, unsigned long addr); extern void ___raw_writeq(unsigned long b, unsigned long addr); #endif #ifdef __KERNEL__ /* * The platform header files may define some of these macros to use * the inlined versions where appropriate. These macros may also be * redefined by userlevel programs. */ #ifndef inb # define inb(p) _inb(p) #endif #ifndef inw # define inw(p) _inw(p) #endif #ifndef inl # define inl(p) _inl(p) #endif #ifndef outb # define outb(b,p) _outb((b),(p)) #endif #ifndef outw # define outw(w,p) _outw((w),(p)) #endif #ifndef outl # define outl(l,p) _outl((l),(p)) #endif #ifndef inb_p # define inb_p _inb_p #endif #ifndef inw_p # define inw_p _inw_p #endif #ifndef inl_p # define inl_p _inl_p #endif #ifndef outb_p # define outb_p _outb_p #endif #ifndef outw_p # define outw_p _outw_p #endif #ifndef outl_p # define outl_p _outl_p #endif #ifndef insb # define insb(p,d,c) _insb((p),(d),(c)) #endif #ifndef insw # define insw(p,d,c) _insw((p),(d),(c)) #endif #ifndef insl # define insl(p,d,c) _insl((p),(d),(c)) #endif #ifndef outsb # define outsb(p,s,c) _outsb((p),(s),(c)) #endif #ifndef outsw # define outsw(p,s,c) _outsw((p),(s),(c)) #endif #ifndef outsl # define outsl(p,s,c) _outsl((p),(s),(c)) #endif #ifdef __raw_readb # define readb(a) ({ unsigned long r_ = __raw_readb(a); mb(); r_; }) #endif #ifdef __raw_readw # define readw(a) ({ unsigned long r_ = __raw_readw(a); mb(); r_; }) #endif #ifdef __raw_readl # define readl(a) ({ unsigned long r_ = __raw_readl(a); mb(); r_; }) #endif #ifdef __raw_writeb # define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); }) #endif #ifdef __raw_writew # define writew(v,a) ({ __raw_writew((v),(a)); mb(); }) #endif #ifdef __raw_writel # define writel(v,a) ({ __raw_writel((v),(a)); mb(); }) #endif #ifndef __raw_readb # define __raw_readb(a) ___raw_readb((unsigned long)(a)) #endif #ifndef __raw_readw # define __raw_readw(a) ___raw_readw((unsigned long)(a)) #endif #ifndef __raw_readl # define __raw_readl(a) ___raw_readl((unsigned long)(a)) #endif #ifndef __raw_writeb # define __raw_writeb(v,a) ___raw_writeb((v),(unsigned long)(a)) #endif #ifndef __raw_writew # define __raw_writew(v,a) ___raw_writew((v),(unsigned long)(a)) #endif #ifndef __raw_writel # define __raw_writel(v,a) ___raw_writel((v),(unsigned long)(a)) #endif #ifndef readb # define readb(a) _readb((unsigned long)(a)) #endif #ifndef readw # define readw(a) _readw((unsigned long)(a)) #endif #ifndef readl # define readl(a) _readl((unsigned long)(a)) #endif #ifndef writeb # define writeb(v,a) _writeb((v),(unsigned long)(a)) #endif #ifndef writew # define writew(v,a) _writew((v),(unsigned long)(a)) #endif #ifndef writel # define writel(v,a) _writel((v),(unsigned long)(a)) #endif #else /* Userspace declarations. */ extern unsigned int inb(unsigned long port); extern unsigned int inw(unsigned long port); extern unsigned int inl(unsigned long port); extern void outb(unsigned char b,unsigned long port); extern void outw(unsigned short w,unsigned long port); extern void outl(unsigned int l,unsigned long port); extern void insb (unsigned long port, void *dst, unsigned long count); extern void insw (unsigned long port, void *dst, unsigned long count); extern void insl (unsigned long port, void *dst, unsigned long count); extern void outsb (unsigned long port, const void *src, unsigned long count); extern void outsw (unsigned long port, const void *src, unsigned long count); extern void outsl (unsigned long port, const void *src, unsigned long count); extern unsigned long readb(unsigned long addr); extern unsigned long readw(unsigned long addr); extern unsigned long readl(unsigned long addr); extern void writeb(unsigned char b, unsigned long addr); extern void writew(unsigned short b, unsigned long addr); extern void writel(unsigned int b, unsigned long addr); #endif /* __KERNEL__ */ #ifdef __KERNEL__ /* * If the platform has PC-like I/O, this function converts the offset into * an address. */ extern __inline__ unsigned long isa_port2addr(unsigned long offset) { return __isa_port2addr(offset); } #define isa_readb(a) readb(isa_port2addr(a)) #define isa_readw(a) readw(isa_port2addr(a)) #define isa_readl(a) readl(isa_port2addr(a)) #define isa_writeb(b,a) writeb(b,isa_port2addr(a)) #define isa_writew(w,a) writew(w,isa_port2addr(a)) #define isa_writel(l,a) writel(l,isa_port2addr(a)) #define isa_memset_io(a,b,c) \ memset((void *)(isa_port2addr((unsigned long)a)),(b),(c)) #define isa_memcpy_fromio(a,b,c) \ memcpy((a),(void *)(isa_port2addr((unsigned long)(b))),(c)) #define isa_memcpy_toio(a,b,c) \ memcpy((void *)(isa_port2addr((unsigned long)(a))),(b),(c)) /* We really want to try and get these to memcpy etc */ extern void memcpy_fromio(void *, unsigned long, unsigned long); extern void memcpy_toio(unsigned long, const void *, unsigned long); extern void memset_io(unsigned long, int, unsigned long); /* SuperH on-chip I/O functions */ extern __inline__ unsigned long ctrl_inb(unsigned long addr) { return *(volatile unsigned char*)addr; } extern __inline__ unsigned long ctrl_inw(unsigned long addr) { return *(volatile unsigned short*)addr; } extern __inline__ unsigned long ctrl_inl(unsigned long addr) { return *(volatile unsigned long*)addr; } extern __inline__ void ctrl_outb(unsigned char b, unsigned long addr) { *(volatile unsigned char*)addr = b; } extern __inline__ void ctrl_outw(unsigned short b, unsigned long addr) { *(volatile unsigned short*)addr = b; } extern __inline__ void ctrl_outl(unsigned int b, unsigned long addr) { *(volatile unsigned long*)addr = b; } #define IO_SPACE_LIMIT 0xffffffff #include /* * Change virtual addresses to physical addresses and vv. * These are trivial on the 1:1 Linux/SuperH mapping */ extern __inline__ unsigned long virt_to_phys(volatile void * address) { return PHYSADDR(address); } extern __inline__ void * phys_to_virt(unsigned long address) { return (void *)P1SEGADDR(address); } #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt /* * readX/writeX() are used to access memory mapped devices. On some * architectures the memory mapped IO stuff needs to be accessed * differently. On the x86 architecture, we just read/write the * memory location directly. * * On SH, we have the whole physical address space mapped at all times * (as MIPS does), so "ioremap()" and "iounmap()" do not need to do * anything. (This isn't true for all machines but we still handle * these cases with wired TLB entries anyway ...) * * We cheat a bit and always return uncachable areas until we've fixed * the drivers to handle caching properly. */ static __inline__ void * ioremap(unsigned long offset, unsigned long size) { return __ioremap(offset, size); } /* * This one maps high address device memory and turns off caching for that area. * it's useful if some control registers are in such an area and write combining * or read caching is not desirable: */ static __inline__ void * ioremap_nocache (unsigned long offset, unsigned long size) { return __ioremap_nocache(offset, size); } static __inline__ void iounmap(void *addr) { return __iounmap(addr); } static __inline__ int check_signature(unsigned long io_addr, const unsigned char *signature, int length) { int retval = 0; do { if (readb(io_addr) != *signature) goto out; io_addr++; signature++; length--; } while (length); retval = 1; out: return retval; } /* * The caches on some architectures aren't dma-coherent and have need to * handle this in software. There are three types of operations that * can be applied to dma buffers. * * - dma_cache_wback_inv(start, size) makes caches and RAM coherent by * writing the content of the caches back to memory, if necessary. * The function also invalidates the affected part of the caches as * necessary before DMA transfers from outside to memory. * - dma_cache_inv(start, size) invalidates the affected parts of the * caches. Dirty lines of the caches may be written back or simply * be discarded. This operation is necessary before dma operations * to the memory. * - dma_cache_wback(start, size) writes back any dirty lines but does * not invalidate the cache. This can be used before DMA reads from * memory, */ #define dma_cache_wback_inv(_start,_size) \ cache_flush_area((unsigned long)(_start),((unsigned long)(_start)+(_size))) #define dma_cache_inv(_start,_size) \ cache_purge_area((unsigned long)(_start),((unsigned long)(_start)+(_size))) #define dma_cache_wback(_start,_size) \ cache_wback_area((unsigned long)(_start),((unsigned long)(_start)+(_size))) #endif /* __KERNEL__ */ #endif /* __ASM_SH_IO_H */