/* $Id: dma.h,v 1.16 1999/09/10 10:44:32 davem Exp $ * include/asm-sparc64/dma.h * * Copyright 1996 (C) David S. Miller (davem@caip.rutgers.edu) */ #ifndef _ASM_SPARC64_DMA_H #define _ASM_SPARC64_DMA_H #include #include #include #include #include #include #include extern spinlock_t dma_spin_lock; #define claim_dma_lock() \ ({ unsigned long flags; \ spin_lock_irqsave(&dma_spin_lock, flags); \ flags; \ }) #define release_dma_lock(__flags) \ spin_unlock_irqrestore(&dma_spin_lock, __flags); /* These are irrelevant for Sparc DMA, but we leave it in so that * things can compile. */ #define MAX_DMA_CHANNELS 8 #define DMA_MODE_READ 1 #define DMA_MODE_WRITE 2 /* This is actually used. */ extern unsigned long phys_base; #define MAX_DMA_ADDRESS (phys_base + (0xfe000000UL) + PAGE_OFFSET) /* Useful constants */ #define SIZE_16MB (16*1024*1024) #define SIZE_64K (64*1024) /* Structure to describe the current status of DMA registers on the Sparc */ struct sparc_dma_registers { __volatile__ __u32 cond_reg; /* DMA condition register */ __volatile__ __u32 st_addr; /* Start address of this transfer */ __volatile__ __u32 cnt; /* How many bytes to transfer */ __volatile__ __u32 dma_test; /* DMA test register */ }; /* DVMA chip revisions */ enum dvma_rev { dvmarev0, dvmaesc1, dvmarev1, dvmarev2, dvmarev3, dvmarevplus, dvmahme }; #define DMA_HASCOUNT(rev) ((rev)==dvmaesc1) /* Linux DMA information structure, filled during probe. */ struct Linux_SBus_DMA { struct Linux_SBus_DMA *next; struct linux_sbus_device *SBus_dev; struct sparc_dma_registers *regs; /* Status, misc info */ int node; /* Prom node for this DMA device */ int running; /* Are we doing DMA now? */ int allocated; /* Are we "owned" by anyone yet? */ /* Transfer information. */ unsigned int addr; /* Start address of current transfer */ int nbytes; /* Size of current transfer */ int realbytes; /* For splitting up large transfers, etc. */ /* DMA revision */ enum dvma_rev revision; }; extern struct Linux_SBus_DMA *dma_chain; /* Broken hardware... */ #define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev1) #define DMA_ISESC1(dma) ((dma)->revision == dvmaesc1) /* Main routines in dma.c */ extern void dvma_init(struct linux_sbus *); /* Fields in the cond_reg register */ /* First, the version identification bits */ #define DMA_DEVICE_ID 0xf0000000 /* Device identification bits */ #define DMA_VERS0 0x00000000 /* Sunray DMA version */ #define DMA_ESCV1 0x40000000 /* DMA ESC Version 1 */ #define DMA_VERS1 0x80000000 /* DMA rev 1 */ #define DMA_VERS2 0xa0000000 /* DMA rev 2 */ #define DMA_VERHME 0xb0000000 /* DMA hme gate array */ #define DMA_VERSPLUS 0x90000000 /* DMA rev 1 PLUS */ #define DMA_HNDL_INTR 0x00000001 /* An IRQ needs to be handled */ #define DMA_HNDL_ERROR 0x00000002 /* We need to take an error */ #define DMA_FIFO_ISDRAIN 0x0000000c /* The DMA FIFO is draining */ #define DMA_INT_ENAB 0x00000010 /* Turn on interrupts */ #define DMA_FIFO_INV 0x00000020 /* Invalidate the FIFO */ #define DMA_ACC_SZ_ERR 0x00000040 /* The access size was bad */ #define DMA_FIFO_STDRAIN 0x00000040 /* DMA_VERS1 Drain the FIFO */ #define DMA_RST_SCSI 0x00000080 /* Reset the SCSI controller */ #define DMA_RST_ENET DMA_RST_SCSI /* Reset the ENET controller */ #define DMA_ST_WRITE 0x00000100 /* write from device to memory */ #define DMA_ENABLE 0x00000200 /* Fire up DMA, handle requests */ #define DMA_PEND_READ 0x00000400 /* DMA_VERS1/0/PLUS Pending Read */ #define DMA_ESC_BURST 0x00000800 /* 1=16byte 0=32byte */ #define DMA_READ_AHEAD 0x00001800 /* DMA read ahead partial longword */ #define DMA_DSBL_RD_DRN 0x00001000 /* No EC drain on slave reads */ #define DMA_BCNT_ENAB 0x00002000 /* If on, use the byte counter */ #define DMA_TERM_CNTR 0x00004000 /* Terminal counter */ #define DMA_SCSI_SBUS64 0x00008000 /* HME: Enable 64-bit SBUS mode. */ #define DMA_CSR_DISAB 0x00010000 /* No FIFO drains during csr */ #define DMA_SCSI_DISAB 0x00020000 /* No FIFO drains during reg */ #define DMA_DSBL_WR_INV 0x00020000 /* No EC inval. on slave writes */ #define DMA_ADD_ENABLE 0x00040000 /* Special ESC DVMA optimization */ #define DMA_E_BURST8 0x00040000 /* ENET: SBUS r/w burst size */ #define DMA_BRST_SZ 0x000c0000 /* SCSI: SBUS r/w burst size */ #define DMA_BRST64 0x000c0000 /* SCSI: 64byte bursts (HME on UltraSparc only) */ #define DMA_BRST32 0x00040000 /* SCSI: 32byte bursts */ #define DMA_BRST16 0x00000000 /* SCSI: 16byte bursts */ #define DMA_BRST0 0x00080000 /* SCSI: no bursts (non-HME gate arrays) */ #define DMA_ADDR_DISAB 0x00100000 /* No FIFO drains during addr */ #define DMA_2CLKS 0x00200000 /* Each transfer = 2 clock ticks */ #define DMA_3CLKS 0x00400000 /* Each transfer = 3 clock ticks */ #define DMA_EN_ENETAUI DMA_3CLKS /* Put lance into AUI-cable mode */ #define DMA_CNTR_DISAB 0x00800000 /* No IRQ when DMA_TERM_CNTR set */ #define DMA_AUTO_NADDR 0x01000000 /* Use "auto nxt addr" feature */ #define DMA_SCSI_ON 0x02000000 /* Enable SCSI dma */ #define DMA_PARITY_OFF 0x02000000 /* HME: disable parity checking */ #define DMA_LOADED_ADDR 0x04000000 /* Address has been loaded */ #define DMA_LOADED_NADDR 0x08000000 /* Next address has been loaded */ #define DMA_RESET_FAS366 0x08000000 /* HME: Assert RESET to FAS366 */ /* Values describing the burst-size property from the PROM */ #define DMA_BURST1 0x01 #define DMA_BURST2 0x02 #define DMA_BURST4 0x04 #define DMA_BURST8 0x08 #define DMA_BURST16 0x10 #define DMA_BURST32 0x20 #define DMA_BURST64 0x40 #define DMA_BURSTBITS 0x7f /* Determine highest possible final transfer address given a base */ #define DMA_MAXEND(addr) (0x01000000UL-(((unsigned long)(addr))&0x00ffffffUL)) /* Yes, I hack a lot of elisp in my spare time... */ #define DMA_ERROR_P(regs) ((((regs)->cond_reg) & DMA_HNDL_ERROR)) #define DMA_IRQ_P(regs) ((((regs)->cond_reg) & (DMA_HNDL_INTR | DMA_HNDL_ERROR))) #define DMA_WRITE_P(regs) ((((regs)->cond_reg) & DMA_ST_WRITE)) #define DMA_OFF(regs) ((((regs)->cond_reg) &= (~DMA_ENABLE))) #define DMA_INTSOFF(regs) ((((regs)->cond_reg) &= (~DMA_INT_ENAB))) #define DMA_INTSON(regs) ((((regs)->cond_reg) |= (DMA_INT_ENAB))) #define DMA_PUNTFIFO(regs) ((((regs)->cond_reg) |= DMA_FIFO_INV)) #define DMA_SETSTART(regs, addr) ((((regs)->st_addr) = (char *) addr)) #define DMA_BEGINDMA_W(regs) \ ((((regs)->cond_reg |= (DMA_ST_WRITE|DMA_ENABLE|DMA_INT_ENAB)))) #define DMA_BEGINDMA_R(regs) \ ((((regs)->cond_reg |= ((DMA_ENABLE|DMA_INT_ENAB)&(~DMA_ST_WRITE))))) /* For certain DMA chips, we need to disable ints upon irq entry * and turn them back on when we are done. So in any ESP interrupt * handler you *must* call DMA_IRQ_ENTRY upon entry and DMA_IRQ_EXIT * when leaving the handler. You have been warned... */ #define DMA_IRQ_ENTRY(dma, dregs) do { \ if(DMA_ISBROKEN(dma)) DMA_INTSOFF(dregs); \ } while (0) #define DMA_IRQ_EXIT(dma, dregs) do { \ if(DMA_ISBROKEN(dma)) DMA_INTSON(dregs); \ } while(0) #define for_each_dvma(dma) \ for((dma) = dma_chain; (dma); (dma) = (dma)->next) extern int get_dma_list(char *); extern int request_dma(unsigned int, __const__ char *); extern void free_dma(unsigned int); /* From PCI */ #ifdef CONFIG_PCI extern int isa_dma_bridge_buggy; #else #define isa_dma_bridge_buggy (0) #endif #endif /* !(_ASM_SPARC64_DMA_H) */