/* $Id: pgtable.h,v 1.120 2000/02/16 07:34:54 davem Exp $ * pgtable.h: SpitFire page table operations. * * Copyright 1996,1997 David S. Miller (davem@caip.rutgers.edu) * Copyright 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ #ifndef _SPARC64_PGTABLE_H #define _SPARC64_PGTABLE_H /* This file contains the functions and defines necessary to modify and use * the SpitFire page tables. */ #include #include #include #include #ifndef __ASSEMBLY__ /* Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3) + (PAGE_SHIFT-2)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* Entries per page directory level. */ #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3)) /* We the first one in this file, what we export to the kernel * is different so we can optimize correctly for 32-bit tasks. */ #define REAL_PTRS_PER_PMD (1UL << (PAGE_SHIFT-2)) #define PTRS_PER_PMD ((const int)((current->thread.flags & SPARC_FLAG_32BIT) ? \ (REAL_PTRS_PER_PMD >> 2) : (REAL_PTRS_PER_PMD))) /* We cannot use the top 16G because VPTE table lives there. */ #define PTRS_PER_PGD ((1UL << (PAGE_SHIFT-3))-1) /* Kernel has a separate 44bit address space. */ #define USER_PTRS_PER_PGD ((const int)((current->thread.flags & SPARC_FLAG_32BIT) ? \ (1) : (PTRS_PER_PGD))) #define PTE_TABLE_SIZE 0x2000 /* 1024 entries 8 bytes each */ #define PMD_TABLE_SIZE 0x2000 /* 2048 entries 4 bytes each */ #define PGD_TABLE_SIZE 0x1000 /* 1024 entries 4 bytes each */ /* the no. of pointers that fit on a page */ #define PTRS_PER_PAGE (1UL << (PAGE_SHIFT-3)) /* NOTE: TLB miss handlers depend heavily upon where this is. */ #define VMALLOC_START 0x0000000140000000UL #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END 0x0000000200000000UL #define pte_ERROR(e) __builtin_trap() #define pmd_ERROR(e) __builtin_trap() #define pgd_ERROR(e) __builtin_trap() #endif /* !(__ASSEMBLY__) */ /* SpitFire TTE bits. */ #define _PAGE_VALID 0x8000000000000000 /* Valid TTE */ #define _PAGE_R 0x8000000000000000 /* Used to keep ref bit up to date */ #define _PAGE_SZ4MB 0x6000000000000000 /* 4MB Page */ #define _PAGE_SZ512K 0x4000000000000000 /* 512K Page */ #define _PAGE_SZ64K 0x2000000000000000 /* 64K Page */ #define _PAGE_SZ8K 0x0000000000000000 /* 8K Page */ #define _PAGE_NFO 0x1000000000000000 /* No Fault Only */ #define _PAGE_IE 0x0800000000000000 /* Invert Endianness */ #define _PAGE_SOFT2 0x07FC000000000000 /* Second set of software bits */ #define _PAGE_DIAG 0x0003FE0000000000 /* Diagnostic TTE bits */ #define _PAGE_PADDR 0x000001FFFFFFE000 /* Physical Address bits [40:13] */ #define _PAGE_SOFT 0x0000000000001F80 /* First set of software bits */ #define _PAGE_L 0x0000000000000040 /* Locked TTE */ #define _PAGE_CP 0x0000000000000020 /* Cacheable in Physical Cache */ #define _PAGE_CV 0x0000000000000010 /* Cacheable in Virtual Cache */ #define _PAGE_E 0x0000000000000008 /* side-Effect */ #define _PAGE_P 0x0000000000000004 /* Privileged Page */ #define _PAGE_W 0x0000000000000002 /* Writable */ #define _PAGE_G 0x0000000000000001 /* Global */ /* Here are the SpitFire software bits we use in the TTE's. */ #define _PAGE_MODIFIED 0x0000000000000800 /* Modified Page (ie. dirty) */ #define _PAGE_ACCESSED 0x0000000000000400 /* Accessed Page (ie. referenced) */ #define _PAGE_READ 0x0000000000000200 /* Readable SW Bit */ #define _PAGE_WRITE 0x0000000000000100 /* Writable SW Bit */ #define _PAGE_PRESENT 0x0000000000000080 /* Present Page (ie. not swapped out) */ #define _PAGE_CACHE (_PAGE_CP | _PAGE_CV) #define __DIRTY_BITS (_PAGE_MODIFIED | _PAGE_WRITE | _PAGE_W) #define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_READ | _PAGE_R) #define __PRIV_BITS _PAGE_P #define PAGE_NONE __pgprot (_PAGE_PRESENT | _PAGE_ACCESSED) /* Don't set the TTE _PAGE_W bit here, else the dirty bit never gets set. */ #define PAGE_SHARED __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \ __ACCESS_BITS | _PAGE_WRITE) #define PAGE_COPY __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \ __ACCESS_BITS) #define PAGE_READONLY __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \ __ACCESS_BITS) #define PAGE_KERNEL __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \ __PRIV_BITS | __ACCESS_BITS | __DIRTY_BITS) #define PAGE_INVALID __pgprot (0) #define _PFN_MASK _PAGE_PADDR #define _PAGE_CHG_MASK (_PFN_MASK | _PAGE_MODIFIED | _PAGE_ACCESSED | _PAGE_PRESENT) #define pg_iobits (_PAGE_VALID | _PAGE_PRESENT | __DIRTY_BITS | __ACCESS_BITS | _PAGE_E) #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED #ifndef __ASSEMBLY__ extern pte_t __bad_page(void); #define BAD_PAGE __bad_page() /* First physical page can be anywhere, the following is needed so that * va-->pa and vice versa conversions work properly without performance * hit for all __pa()/__va() operations. */ extern unsigned long phys_base; #define ZERO_PAGE(vaddr) (mem_map + (phys_base>>PAGE_SHIFT)) /* Warning: These take pointers to page structs now... */ #define mk_pte(page, pgprot) \ __pte(((page - mem_map) << PAGE_SHIFT) | pgprot_val(pgprot)) #define page_pte_prot(page, prot) mk_pte(page, prot) #define page_pte(page) page_pte_prot(page, __pgprot(0)) #define mk_pte_phys(physpage, pgprot) (__pte((physpage) | pgprot_val(pgprot))) extern inline pte_t pte_modify(pte_t orig_pte, pgprot_t new_prot) { pte_t __pte; pte_val(__pte) = (pte_val(orig_pte) & _PAGE_CHG_MASK) | pgprot_val(new_prot); return __pte; } #define pmd_set(pmdp, ptep) \ (pmd_val(*(pmdp)) = (__pa((unsigned long) (ptep)) >> 11UL)) #define pgd_set(pgdp, pmdp) \ (pgd_val(*(pgdp)) = (__pa((unsigned long) (pmdp)) >> 11UL)) #define pte_pagenr(pte) ((unsigned long) ((pte_val(pte)&~PAGE_OFFSET)>>PAGE_SHIFT)) #define pmd_page(pmd) ((unsigned long) __va((pmd_val(pmd)<<11UL))) #define pgd_page(pgd) ((unsigned long) __va((pgd_val(pgd)<<11UL))) #define pte_none(pte) (!pte_val(pte)) #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) #define pte_clear(pte) (pte_val(*(pte)) = 0UL) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) (0) #define pmd_present(pmd) (pmd_val(pmd) != 0UL) #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) #define pgd_none(pgd) (!pgd_val(pgd)) #define pgd_bad(pgd) (0) #define pgd_present(pgd) (pgd_val(pgd) != 0UL) #define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL) /* The following only work if pte_present() is true. * Undefined behaviour if not.. */ #define pte_read(pte) (pte_val(pte) & _PAGE_READ) #define pte_write(pte) (pte_val(pte) & _PAGE_WRITE) #define pte_dirty(pte) (pte_val(pte) & _PAGE_MODIFIED) #define pte_young(pte) (pte_val(pte) & _PAGE_ACCESSED) #define pte_wrprotect(pte) (__pte(pte_val(pte) & ~(_PAGE_WRITE|_PAGE_W))) #define pte_rdprotect(pte) (__pte(((pte_val(pte)<<1UL)>>1UL) & ~_PAGE_READ)) #define pte_mkclean(pte) (__pte(pte_val(pte) & ~(_PAGE_MODIFIED|_PAGE_W))) #define pte_mkold(pte) (__pte(((pte_val(pte)<<1UL)>>1UL) & ~_PAGE_ACCESSED)) /* Permanent address of a page. */ #define __page_address(page) ((page)->virtual) #define page_address(page) ({ __page_address(page); }) #define pte_page(x) (mem_map+pte_pagenr(x)) /* Be very careful when you change these three, they are delicate. */ static __inline__ pte_t pte_mkyoung(pte_t _pte) { if(pte_val(_pte) & _PAGE_READ) return __pte(pte_val(_pte)|(_PAGE_ACCESSED|_PAGE_R)); else return __pte(pte_val(_pte)|(_PAGE_ACCESSED)); } static __inline__ pte_t pte_mkwrite(pte_t _pte) { if(pte_val(_pte) & _PAGE_MODIFIED) return __pte(pte_val(_pte)|(_PAGE_WRITE|_PAGE_W)); else return __pte(pte_val(_pte)|(_PAGE_WRITE)); } static __inline__ pte_t pte_mkdirty(pte_t _pte) { if(pte_val(_pte) & _PAGE_WRITE) return __pte(pte_val(_pte)|(_PAGE_MODIFIED|_PAGE_W)); else return __pte(pte_val(_pte)|(_PAGE_MODIFIED)); } /* to find an entry in a page-table-directory. */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD)) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* Find an entry in the second-level page table.. */ #define pmd_offset(dir, address) ((pmd_t *) pgd_page(*(dir)) + \ ((address >> PMD_SHIFT) & (REAL_PTRS_PER_PMD-1))) /* Find an entry in the third-level page table.. */ #define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) + \ ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) extern pgd_t swapper_pg_dir[1]; /* These do nothing with the way I have things setup. */ #define mmu_lockarea(vaddr, len) (vaddr) #define mmu_unlockarea(vaddr, len) do { } while(0) /* There used to be some funny code here which tried to guess which * TLB wanted the mapping, that wasn't accurate enough to justify it's * existance. The real way to do that is to have each TLB miss handler * pass in a distinct code to do_sparc64_fault() and do it more accurately * there. * * What we do need to handle here is prevent I-cache corruption. The * deal is that the I-cache snoops stores from other CPUs and all DMA * activity, however stores from the local processor are not snooped. * The dynamic linker and our signal handler mechanism take care of * the cases where they write into instruction space, but when a page * is copied in the kernel and then executed in user-space is not handled * right. This leads to corruptions if things are "just right", consider * the following scenerio: * 1) Process 1 frees up a page that was used for the PLT of libc in * it's address space. * 2) Process 2 writes into a page in the PLT of libc for the first * time. do_wp_page() copies the page locally, the local I-cache of * the processor does not notice the writes during the page copy. * The new page used just so happens to be the one just freed in #1. * 3) After the PLT write, later the cpu calls into an unresolved PLT * entry, the CPU executes old instructions from process 1's PLT * table. * 4) Splat. */ extern void __flush_icache_page(unsigned long phys_page); #define update_mmu_cache(__vma, __address, _pte) \ do { \ unsigned short __flags = ((__vma)->vm_flags); \ if ((__flags & VM_EXEC) != 0 && \ ((pte_val(_pte) & (_PAGE_PRESENT | _PAGE_WRITE | _PAGE_MODIFIED)) == \ (_PAGE_PRESENT | _PAGE_WRITE | _PAGE_MODIFIED))) { \ __flush_icache_page(pte_pagenr(_pte) << PAGE_SHIFT); \ } \ } while(0) #define flush_icache_page(vma, pg) do { } while(0) /* Make a non-present pseudo-TTE. */ extern inline pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space) { pte_t pte; pte_val(pte) = ((page) | pgprot_val(prot) | _PAGE_E) & ~(unsigned long)_PAGE_CACHE; pte_val(pte) |= (((unsigned long)space) << 32); return pte; } /* Encode and de-code a swap entry */ #define SWP_TYPE(entry) (((entry).val >> PAGE_SHIFT) & 0xff) #define SWP_OFFSET(entry) ((entry).val >> (PAGE_SHIFT + 8)) #define SWP_ENTRY(type, offset) \ ( (swp_entry_t) \ { \ ((type << PAGE_SHIFT) | (offset << (PAGE_SHIFT + 8))) \ } ) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val }) extern __inline__ unsigned long sun4u_get_pte (unsigned long addr) { pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; if (addr >= PAGE_OFFSET) return addr & _PAGE_PADDR; pgdp = pgd_offset_k (addr); pmdp = pmd_offset (pgdp, addr); ptep = pte_offset (pmdp, addr); return pte_val (*ptep) & _PAGE_PADDR; } extern __inline__ unsigned long __get_phys (unsigned long addr) { return sun4u_get_pte (addr); } extern __inline__ int __get_iospace (unsigned long addr) { return ((sun4u_get_pte (addr) & 0xf0000000) >> 28); } extern void * module_map (unsigned long size); extern void module_unmap (void *addr); extern unsigned long *sparc64_valid_addr_bitmap; /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define kern_addr_valid(addr) \ (test_bit(__pa((unsigned long)(addr))>>22, sparc64_valid_addr_bitmap)) extern int io_remap_page_range(unsigned long from, unsigned long offset, unsigned long size, pgprot_t prot, int space); #endif /* !(__ASSEMBLY__) */ /* We provide our own get_unmapped_area to cope with VA holes for userland */ #define HAVE_ARCH_UNMAPPED_AREA #endif /* !(_SPARC64_PGTABLE_H) */