/* * linux/kernel/time.c * * Copyright (C) 1991, 1992 Linus Torvalds * * This file contains the interface functions for the various * time related system calls: time, stime, gettimeofday, settimeofday, * adjtime */ /* * Modification history kernel/time.c * * 1993-09-02 Philip Gladstone * Created file with time related functions from sched.c and adjtimex() * 1993-10-08 Torsten Duwe * adjtime interface update and CMOS clock write code * 1995-08-13 Torsten Duwe * kernel PLL updated to 1994-12-13 specs (rfc-1489) */ #include #include #include #include #include #include #include #include #include #include /* * The timezone where the local system is located. Used as a default by some * programs who obtain this value by using gettimeofday. */ struct timezone sys_tz = { 0, 0}; static void do_normal_gettime(struct timeval * tm) { *tm=xtime; } void (*do_get_fast_time)(struct timeval *) = do_normal_gettime; /* * Generic way to access 'xtime' (the current time of day). * This can be changed if the platform provides a more accurate (and fast!) * version. */ void get_fast_time(struct timeval * t) { do_get_fast_time(t); } #ifndef __alpha__ /* * sys_time() can be implemented in user-level using * sys_gettimeofday(). Is this for backwards compatibility? If so, * why not move it into the appropriate arch directory (for those * architectures that need it). */ asmlinkage int sys_time(int * tloc) { int i; /* SMP: This is fairly trivial. We grab CURRENT_TIME and stuff it to user space. No side effects */ i = CURRENT_TIME; if (tloc) { if (put_user(i,tloc)) i = -EFAULT; } return i; } /* * sys_stime() can be implemented in user-level using * sys_settimeofday(). Is this for backwards compatibility? If so, * why not move it into the appropriate arch directory (for those * architectures that need it). */ asmlinkage int sys_stime(int * tptr) { int value; if (!suser()) return -EPERM; if (get_user(value, tptr)) return -EFAULT; cli(); xtime.tv_sec = value; xtime.tv_usec = 0; time_state = TIME_ERROR; time_maxerror = MAXPHASE; time_esterror = MAXPHASE; sti(); return 0; } #endif asmlinkage int sys_gettimeofday(struct timeval *tv, struct timezone *tz) { if (tv) { struct timeval ktv; do_gettimeofday(&ktv); if (copy_to_user(tv, &ktv, sizeof(ktv))) return -EFAULT; } if (tz) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } /* * Adjust the time obtained from the CMOS to be UTC time instead of * local time. * * This is ugly, but preferable to the alternatives. Otherwise we * would either need to write a program to do it in /etc/rc (and risk * confusion if the program gets run more than once; it would also be * hard to make the program warp the clock precisely n hours) or * compile in the timezone information into the kernel. Bad, bad.... * * - TYT, 1992-01-01 * * The best thing to do is to keep the CMOS clock in universal time (UTC) * as real UNIX machines always do it. This avoids all headaches about * daylight saving times and warping kernel clocks. */ inline static void warp_clock(void) { cli(); xtime.tv_sec += sys_tz.tz_minuteswest * 60; sti(); } /* * In case for some reason the CMOS clock has not already been running * in UTC, but in some local time: The first time we set the timezone, * we will warp the clock so that it is ticking UTC time instead of * local time. Presumably, if someone is setting the timezone then we * are running in an environment where the programs understand about * timezones. This should be done at boot time in the /etc/rc script, * as soon as possible, so that the clock can be set right. Otherwise, * various programs will get confused when the clock gets warped. */ asmlinkage int sys_settimeofday(struct timeval *tv, struct timezone *tz) { static int firsttime = 1; struct timeval new_tv; struct timezone new_tz; if (!suser()) return -EPERM; if (tv) { if (copy_from_user(&new_tv, tv, sizeof(*tv))) return -EFAULT; } if (tz) { if (copy_from_user(&new_tz, tz, sizeof(*tz))) return -EFAULT; /* SMP safe, global irq locking makes it work. */ sys_tz = new_tz; if (firsttime) { firsttime = 0; if (!tv) warp_clock(); } } if (tv) { /* SMP safe, again the code in arch/foo/time.c should * globally block out interrupts when it runs. */ do_settimeofday(&new_tv); } return 0; } long pps_offset = 0; /* pps time offset (us) */ long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ long pps_freq = 0; /* frequency offset (scaled ppm) */ long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ long pps_valid = PPS_VALID; /* pps signal watchdog counter */ int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ long pps_jitcnt = 0; /* jitter limit exceeded */ long pps_calcnt = 0; /* calibration intervals */ long pps_errcnt = 0; /* calibration errors */ long pps_stbcnt = 0; /* stability limit exceeded */ /* hook for a loadable hardpps kernel module */ void (*hardpps_ptr)(struct timeval *) = (void (*)(struct timeval *))0; /* adjtimex mainly allows reading (and writing, if superuser) of * kernel time-keeping variables. used by xntpd. */ asmlinkage int sys_adjtimex(struct timex *txc_p) { long ltemp, mtemp, save_adjust; struct timex txc; /* Local copy of parameter */ /* Copy the user data space into the kernel copy * structure. But bear in mind that the structures * may change */ if(copy_from_user(&txc, txc_p, sizeof(struct timex))) return -EFAULT; /* In order to modify anything, you gotta be super-user! */ if (txc.modes && !suser()) return -EPERM; /* Now we validate the data before disabling interrupts */ if (txc.modes != ADJ_OFFSET_SINGLESHOT && (txc.modes & ADJ_OFFSET)) /* adjustment Offset limited to +- .512 seconds */ if (txc.offset <= - MAXPHASE || txc.offset >= MAXPHASE ) return -EINVAL; /* if the quartz is off by more than 10% something is VERY wrong ! */ if (txc.modes & ADJ_TICK) if (txc.tick < 900000/HZ || txc.tick > 1100000/HZ) return -EINVAL; cli(); /* SMP: global cli() is enough protection. */ /* Save for later - semantics of adjtime is to return old value */ save_adjust = time_adjust; /* If there are input parameters, then process them */ if (txc.modes) { if (time_state == TIME_BAD) time_state = TIME_OK; if (txc.modes & ADJ_STATUS) time_status = txc.status; if (txc.modes & ADJ_FREQUENCY) time_freq = txc.freq; if (txc.modes & ADJ_MAXERROR) time_maxerror = txc.maxerror; if (txc.modes & ADJ_ESTERROR) time_esterror = txc.esterror; if (txc.modes & ADJ_TIMECONST) time_constant = txc.constant; if (txc.modes & ADJ_OFFSET) if ((txc.modes == ADJ_OFFSET_SINGLESHOT) || !(time_status & STA_PLL)) { time_adjust = txc.offset; } else if ((time_status & STA_PLL)||(time_status & STA_PPSTIME)) { ltemp = (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) ? pps_offset : txc.offset; /* * Scale the phase adjustment and * clamp to the operating range. */ if (ltemp > MAXPHASE) time_offset = MAXPHASE << SHIFT_UPDATE; else if (ltemp < -MAXPHASE) time_offset = -(MAXPHASE << SHIFT_UPDATE); else time_offset = ltemp << SHIFT_UPDATE; /* * Select whether the frequency is to be controlled and in which * mode (PLL or FLL). Clamp to the operating range. Ugly * multiply/divide should be replaced someday. */ if (time_status & STA_FREQHOLD || time_reftime == 0) time_reftime = xtime.tv_sec; mtemp = xtime.tv_sec - time_reftime; time_reftime = xtime.tv_sec; if (time_status & STA_FLL) { if (mtemp >= MINSEC) { ltemp = ((time_offset / mtemp) << (SHIFT_USEC - SHIFT_UPDATE)); if (ltemp < 0) time_freq -= -ltemp >> SHIFT_KH; else time_freq += ltemp >> SHIFT_KH; } } else { if (mtemp < MAXSEC) { ltemp *= mtemp; if (ltemp < 0) time_freq -= -ltemp >> (time_constant + time_constant + SHIFT_KF - SHIFT_USEC); else time_freq += ltemp >> (time_constant + time_constant + SHIFT_KF - SHIFT_USEC); } } if (time_freq > time_tolerance) time_freq = time_tolerance; else if (time_freq < -time_tolerance) time_freq = -time_tolerance; } /* STA_PLL || STA_PPSTIME */ if (txc.modes & ADJ_TICK) tick = txc.tick; } txc.offset = save_adjust; txc.freq = time_freq; txc.maxerror = time_maxerror; txc.esterror = time_esterror; txc.status = time_status; txc.constant = time_constant; txc.precision = time_precision; txc.tolerance = time_tolerance; txc.time = xtime; txc.tick = tick; txc.ppsfreq = pps_freq; txc.jitter = pps_jitter; txc.shift = pps_shift; txc.stabil = pps_stabil; txc.jitcnt = pps_jitcnt; txc.calcnt = pps_calcnt; txc.errcnt = pps_errcnt; txc.stbcnt = pps_stbcnt; sti(); return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : time_state; }