/* * Searching a VMA in the linear list task->mm->mmap is horribly slow. * Use an AVL (Adelson-Velskii and Landis) tree to speed up this search * from O(n) to O(log n), where n is the number of VMAs of the task * n is typically around 6, but may reach 3000 in some cases: object-oriented * databases, persistent store, generational garbage collection (Java, Lisp), * ElectricFence. * Written by Bruno Haible . */ /* We keep the list and tree sorted by address. */ #define vm_avl_key vm_end #define vm_avl_key_t unsigned long /* typeof(vma->avl_key) */ /* * task->mm->mmap_avl is the AVL tree corresponding to task->mm->mmap * or, more exactly, its root. * A vm_area_struct has the following fields: * vm_avl_left left son of a tree node * vm_avl_right right son of a tree node * vm_avl_height 1+max(heightof(left),heightof(right)) * The empty tree is represented as NULL. */ /* Since the trees are balanced, their height will never be large. */ #define avl_maxheight 41 /* why this? a small exercise */ #define heightof(tree) ((tree) == vm_avl_empty ? 0 : (tree)->vm_avl_height) /* * Consistency and balancing rules: * 1. tree->vm_avl_height == 1+max(heightof(tree->vm_avl_left),heightof(tree->vm_avl_right)) * 2. abs( heightof(tree->vm_avl_left) - heightof(tree->vm_avl_right) ) <= 1 * 3. foreach node in tree->vm_avl_left: node->vm_avl_key <= tree->vm_avl_key, * foreach node in tree->vm_avl_right: node->vm_avl_key >= tree->vm_avl_key. */ #ifdef DEBUG_AVL /* Look up the nodes at the left and at the right of a given node. */ static void avl_neighbours (struct vm_area_struct * node, struct vm_area_struct * tree, struct vm_area_struct ** to_the_left, struct vm_area_struct ** to_the_right) { vm_avl_key_t key = node->vm_avl_key; *to_the_left = *to_the_right = NULL; for (;;) { if (tree == vm_avl_empty) { printk("avl_neighbours: node not found in the tree\n"); return; } if (key == tree->vm_avl_key) break; if (key < tree->vm_avl_key) { *to_the_right = tree; tree = tree->vm_avl_left; } else { *to_the_left = tree; tree = tree->vm_avl_right; } } if (tree != node) { printk("avl_neighbours: node not exactly found in the tree\n"); return; } if (tree->vm_avl_left != vm_avl_empty) { struct vm_area_struct * node; for (node = tree->vm_avl_left; node->vm_avl_right != vm_avl_empty; node = node->vm_avl_right) continue; *to_the_left = node; } if (tree->vm_avl_right != vm_avl_empty) { struct vm_area_struct * node; for (node = tree->vm_avl_right; node->vm_avl_left != vm_avl_empty; node = node->vm_avl_left) continue; *to_the_right = node; } if ((*to_the_left && ((*to_the_left)->vm_next != node)) || (node->vm_next != *to_the_right)) printk("avl_neighbours: tree inconsistent with list\n"); } #endif /* * Rebalance a tree. * After inserting or deleting a node of a tree we have a sequence of subtrees * nodes[0]..nodes[k-1] such that * nodes[0] is the root and nodes[i+1] = nodes[i]->{vm_avl_left|vm_avl_right}. */ static void avl_rebalance (struct vm_area_struct *** nodeplaces_ptr, int count) { for ( ; count > 0 ; count--) { struct vm_area_struct ** nodeplace = *--nodeplaces_ptr; struct vm_area_struct * node = *nodeplace; struct vm_area_struct * nodeleft = node->vm_avl_left; struct vm_area_struct * noderight = node->vm_avl_right; int heightleft = heightof(nodeleft); int heightright = heightof(noderight); if (heightright + 1 < heightleft) { /* */ /* * */ /* / \ */ /* n+2 n */ /* */ struct vm_area_struct * nodeleftleft = nodeleft->vm_avl_left; struct vm_area_struct * nodeleftright = nodeleft->vm_avl_right; int heightleftright = heightof(nodeleftright); if (heightof(nodeleftleft) >= heightleftright) { /* */ /* * n+2|n+3 */ /* / \ / \ */ /* n+2 n --> / n+1|n+2 */ /* / \ | / \ */ /* n+1 n|n+1 n+1 n|n+1 n */ /* */ node->vm_avl_left = nodeleftright; nodeleft->vm_avl_right = node; nodeleft->vm_avl_height = 1 + (node->vm_avl_height = 1 + heightleftright); *nodeplace = nodeleft; } else { /* */ /* * n+2 */ /* / \ / \ */ /* n+2 n --> n+1 n+1 */ /* / \ / \ / \ */ /* n n+1 n L R n */ /* / \ */ /* L R */ /* */ nodeleft->vm_avl_right = nodeleftright->vm_avl_left; node->vm_avl_left = nodeleftright->vm_avl_right; nodeleftright->vm_avl_left = nodeleft; nodeleftright->vm_avl_right = node; nodeleft->vm_avl_height = node->vm_avl_height = heightleftright; nodeleftright->vm_avl_height = heightleft; *nodeplace = nodeleftright; } } else if (heightleft + 1 < heightright) { /* similar to the above, just interchange 'left' <--> 'right' */ struct vm_area_struct * noderightright = noderight->vm_avl_right; struct vm_area_struct * noderightleft = noderight->vm_avl_left; int heightrightleft = heightof(noderightleft); if (heightof(noderightright) >= heightrightleft) { node->vm_avl_right = noderightleft; noderight->vm_avl_left = node; noderight->vm_avl_height = 1 + (node->vm_avl_height = 1 + heightrightleft); *nodeplace = noderight; } else { noderight->vm_avl_left = noderightleft->vm_avl_right; node->vm_avl_right = noderightleft->vm_avl_left; noderightleft->vm_avl_right = noderight; noderightleft->vm_avl_left = node; noderight->vm_avl_height = node->vm_avl_height = heightrightleft; noderightleft->vm_avl_height = heightright; *nodeplace = noderightleft; } } else { int height = (heightleftvm_avl_height) break; node->vm_avl_height = height; } } } /* Insert a node into a tree. */ static inline void avl_insert (struct vm_area_struct * new_node, struct vm_area_struct ** ptree) { vm_avl_key_t key = new_node->vm_avl_key; struct vm_area_struct ** nodeplace = ptree; struct vm_area_struct ** stack[avl_maxheight]; int stack_count = 0; struct vm_area_struct *** stack_ptr = &stack[0]; /* = &stack[stackcount] */ for (;;) { struct vm_area_struct * node = *nodeplace; if (node == vm_avl_empty) break; *stack_ptr++ = nodeplace; stack_count++; if (key < node->vm_avl_key) nodeplace = &node->vm_avl_left; else nodeplace = &node->vm_avl_right; } new_node->vm_avl_left = vm_avl_empty; new_node->vm_avl_right = vm_avl_empty; new_node->vm_avl_height = 1; *nodeplace = new_node; avl_rebalance(stack_ptr,stack_count); } /* Insert a node into a tree, and * return the node to the left of it and the node to the right of it. */ static inline void avl_insert_neighbours (struct vm_area_struct * new_node, struct vm_area_struct ** ptree, struct vm_area_struct ** to_the_left, struct vm_area_struct ** to_the_right) { vm_avl_key_t key = new_node->vm_avl_key; struct vm_area_struct ** nodeplace = ptree; struct vm_area_struct ** stack[avl_maxheight]; int stack_count = 0; struct vm_area_struct *** stack_ptr = &stack[0]; /* = &stack[stackcount] */ *to_the_left = *to_the_right = NULL; for (;;) { struct vm_area_struct * node = *nodeplace; if (node == vm_avl_empty) break; *stack_ptr++ = nodeplace; stack_count++; if (key < node->vm_avl_key) { *to_the_right = node; nodeplace = &node->vm_avl_left; } else { *to_the_left = node; nodeplace = &node->vm_avl_right; } } new_node->vm_avl_left = vm_avl_empty; new_node->vm_avl_right = vm_avl_empty; new_node->vm_avl_height = 1; *nodeplace = new_node; avl_rebalance(stack_ptr,stack_count); } /* Removes a node out of a tree. */ static void avl_remove (struct vm_area_struct * node_to_delete, struct vm_area_struct ** ptree) { vm_avl_key_t key = node_to_delete->vm_avl_key; struct vm_area_struct ** nodeplace = ptree; struct vm_area_struct ** stack[avl_maxheight]; int stack_count = 0; struct vm_area_struct *** stack_ptr = &stack[0]; /* = &stack[stackcount] */ struct vm_area_struct ** nodeplace_to_delete; for (;;) { struct vm_area_struct * node = *nodeplace; #ifdef DEBUG_AVL if (node == vm_avl_empty) { /* what? node_to_delete not found in tree? */ printk("avl_remove: node to delete not found in tree\n"); return; } #endif *stack_ptr++ = nodeplace; stack_count++; if (key == node->vm_avl_key) break; if (key < node->vm_avl_key) nodeplace = &node->vm_avl_left; else nodeplace = &node->vm_avl_right; } nodeplace_to_delete = nodeplace; /* Have to remove node_to_delete = *nodeplace_to_delete. */ if (node_to_delete->vm_avl_left == vm_avl_empty) { *nodeplace_to_delete = node_to_delete->vm_avl_right; stack_ptr--; stack_count--; } else { struct vm_area_struct *** stack_ptr_to_delete = stack_ptr; struct vm_area_struct ** nodeplace = &node_to_delete->vm_avl_left; struct vm_area_struct * node; for (;;) { node = *nodeplace; if (node->vm_avl_right == vm_avl_empty) break; *stack_ptr++ = nodeplace; stack_count++; nodeplace = &node->vm_avl_right; } *nodeplace = node->vm_avl_left; /* node replaces node_to_delete */ node->vm_avl_left = node_to_delete->vm_avl_left; node->vm_avl_right = node_to_delete->vm_avl_right; node->vm_avl_height = node_to_delete->vm_avl_height; *nodeplace_to_delete = node; /* replace node_to_delete */ *stack_ptr_to_delete = &node->vm_avl_left; /* replace &node_to_delete->vm_avl_left */ } avl_rebalance(stack_ptr,stack_count); } #ifdef DEBUG_AVL /* print a list */ static void printk_list (struct vm_area_struct * vma) { printk("["); while (vma) { printk("%08lX-%08lX", vma->vm_start, vma->vm_end); vma = vma->vm_next; if (!vma) break; printk(" "); } printk("]"); } /* print a tree */ static void printk_avl (struct vm_area_struct * tree) { if (tree != vm_avl_empty) { printk("("); if (tree->vm_avl_left != vm_avl_empty) { printk_avl(tree->vm_avl_left); printk("<"); } printk("%08lX-%08lX", tree->vm_start, tree->vm_end); if (tree->vm_avl_right != vm_avl_empty) { printk(">"); printk_avl(tree->vm_avl_right); } printk(")"); } } static char *avl_check_point = "somewhere"; /* check a tree's consistency and balancing */ static void avl_checkheights (struct vm_area_struct * tree) { int h, hl, hr; if (tree == vm_avl_empty) return; avl_checkheights(tree->vm_avl_left); avl_checkheights(tree->vm_avl_right); h = tree->vm_avl_height; hl = heightof(tree->vm_avl_left); hr = heightof(tree->vm_avl_right); if ((h == hl+1) && (hr <= hl) && (hl <= hr+1)) return; if ((h == hr+1) && (hl <= hr) && (hr <= hl+1)) return; printk("%s: avl_checkheights: heights inconsistent\n",avl_check_point); } /* check that all values stored in a tree are < key */ static void avl_checkleft (struct vm_area_struct * tree, vm_avl_key_t key) { if (tree == vm_avl_empty) return; avl_checkleft(tree->vm_avl_left,key); avl_checkleft(tree->vm_avl_right,key); if (tree->vm_avl_key < key) return; printk("%s: avl_checkleft: left key %lu >= top key %lu\n",avl_check_point,tree->vm_avl_key,key); } /* check that all values stored in a tree are > key */ static void avl_checkright (struct vm_area_struct * tree, vm_avl_key_t key) { if (tree == vm_avl_empty) return; avl_checkright(tree->vm_avl_left,key); avl_checkright(tree->vm_avl_right,key); if (tree->vm_avl_key > key) return; printk("%s: avl_checkright: right key %lu <= top key %lu\n",avl_check_point,tree->vm_avl_key,key); } /* check that all values are properly increasing */ static void avl_checkorder (struct vm_area_struct * tree) { if (tree == vm_avl_empty) return; avl_checkorder(tree->vm_avl_left); avl_checkorder(tree->vm_avl_right); avl_checkleft(tree->vm_avl_left,tree->vm_avl_key); avl_checkright(tree->vm_avl_right,tree->vm_avl_key); } /* all checks */ static void avl_check (struct task_struct * task, char *caller) { avl_check_point = caller; /* printk("task \"%s\", %s\n",task->comm,caller); */ /* printk("task \"%s\" list: ",task->comm); printk_list(task->mm->mmap); printk("\n"); */ /* printk("task \"%s\" tree: ",task->comm); printk_avl(task->mm->mmap_avl); printk("\n"); */ avl_checkheights(task->mm->mmap_avl); avl_checkorder(task->mm->mmap_avl); } #endif