/* * AARP: An implementation of the AppleTalk AARP protocol for * Ethernet 'ELAP'. * * Alan Cox * * This doesn't fit cleanly with the IP arp. Potentially we can use * the generic neighbour discovery code to clean this up. * * FIXME: * We ought to handle the retransmits with a single list and a * separate fast timer for when it is needed. * Use neighbour discovery code. * Token Ring Support. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * * References: * Inside AppleTalk (2nd Ed). * Fixes: * Jaume Grau - flush caches on AARP_PROBE * Rob Newberry - Added proxy AARP and AARP proc fs, * moved probing from DDP module. * */ #include #if defined(CONFIG_ATALK) || defined(CONFIG_ATALK_MODULE) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int sysctl_aarp_expiry_time = AARP_EXPIRY_TIME; int sysctl_aarp_tick_time = AARP_TICK_TIME; int sysctl_aarp_retransmit_limit = AARP_RETRANSMIT_LIMIT; int sysctl_aarp_resolve_time = AARP_RESOLVE_TIME; /* * Lists of aarp entries */ struct aarp_entry { /* These first two are only used for unresolved entries */ unsigned long last_sent; /* Last time we xmitted the aarp request */ struct sk_buff_head packet_queue; /* Queue of frames wait for resolution */ int status; /* Used for proxy AARP */ unsigned long expires_at; /* Entry expiry time */ struct at_addr target_addr; /* DDP Address */ struct net_device *dev; /* Device to use */ char hwaddr[6]; /* Physical i/f address of target/router */ unsigned short xmit_count; /* When this hits 10 we give up */ struct aarp_entry *next; /* Next entry in chain */ }; /* * Hashed list of resolved, unresolved and proxy entries */ static struct aarp_entry *resolved[AARP_HASH_SIZE]; static struct aarp_entry *unresolved[AARP_HASH_SIZE]; static struct aarp_entry *proxies[AARP_HASH_SIZE]; static int unresolved_count = 0; /* One lock protects it all. */ static spinlock_t aarp_lock = SPIN_LOCK_UNLOCKED; /* * Used to walk the list and purge/kick entries. */ static struct timer_list aarp_timer; /* * Delete an aarp queue * * Must run under aarp_lock. */ static void __aarp_expire(struct aarp_entry *a) { struct sk_buff *skb; while ((skb=skb_dequeue(&a->packet_queue)) != NULL) kfree_skb(skb); kfree(a); } /* * Send an aarp queue entry request * * Must run under aarp_lock. */ static void __aarp_send_query(struct aarp_entry *a) { static char aarp_eth_multicast[ETH_ALEN] = { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF }; struct net_device *dev = a->dev; int len = dev->hard_header_len + sizeof(struct elapaarp) + aarp_dl->header_length; struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); struct elapaarp *eah; struct at_addr *sat = atalk_find_dev_addr(dev); if (skb == NULL) return; if (sat == NULL) { kfree_skb(skb); return; } /* * Set up the buffer. */ skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length); eah = (struct elapaarp *)skb_put(skb, sizeof(struct elapaarp)); skb->protocol = htons(ETH_P_ATALK); skb->nh.raw = skb->h.raw = (void *) eah; skb->dev = dev; /* * Set up the ARP. */ eah->hw_type = htons(AARP_HW_TYPE_ETHERNET); eah->pa_type = htons(ETH_P_ATALK); eah->hw_len = ETH_ALEN; eah->pa_len = AARP_PA_ALEN; eah->function = htons(AARP_REQUEST); memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN); eah->pa_src_zero= 0; eah->pa_src_net = sat->s_net; eah->pa_src_node= sat->s_node; memset(eah->hw_dst, '\0', ETH_ALEN); eah->pa_dst_zero= 0; eah->pa_dst_net = a->target_addr.s_net; eah->pa_dst_node= a->target_addr.s_node; /* * Add ELAP headers and set target to the AARP multicast. */ aarp_dl->datalink_header(aarp_dl, skb, aarp_eth_multicast); /* * Send it. */ dev_queue_xmit(skb); /* * Update the sending count */ a->xmit_count++; } /* This runs under aarp_lock and in softint context, so only * atomic memory allocations can be used. */ static void aarp_send_reply(struct net_device *dev, struct at_addr *us, struct at_addr *them, unsigned char *sha) { int len = dev->hard_header_len + sizeof(struct elapaarp) + aarp_dl->header_length; struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); struct elapaarp *eah; if (skb == NULL) return; /* * Set up the buffer. */ skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length); eah = (struct elapaarp *)skb_put(skb, sizeof(struct elapaarp)); skb->protocol = htons(ETH_P_ATALK); skb->nh.raw = skb->h.raw = (void *) eah; skb->dev = dev; /* * Set up the ARP. */ eah->hw_type = htons(AARP_HW_TYPE_ETHERNET); eah->pa_type = htons(ETH_P_ATALK); eah->hw_len = ETH_ALEN; eah->pa_len = AARP_PA_ALEN; eah->function = htons(AARP_REPLY); memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN); eah->pa_src_zero= 0; eah->pa_src_net = us->s_net; eah->pa_src_node= us->s_node; if (sha == NULL) memset(eah->hw_dst, '\0', ETH_ALEN); else memcpy(eah->hw_dst, sha, ETH_ALEN); eah->pa_dst_zero= 0; eah->pa_dst_net = them->s_net; eah->pa_dst_node= them->s_node; /* * Add ELAP headers and set target to the AARP multicast. */ aarp_dl->datalink_header(aarp_dl, skb, sha); /* * Send it. */ dev_queue_xmit(skb); } /* * Send probe frames. Called from aarp_probe_network and aarp_proxy_probe_network. */ void aarp_send_probe(struct net_device *dev, struct at_addr *us) { int len = dev->hard_header_len + sizeof(struct elapaarp) + aarp_dl->header_length; struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); struct elapaarp *eah; static char aarp_eth_multicast[ETH_ALEN] = { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF }; if (skb == NULL) return; /* * Set up the buffer. */ skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length); eah = (struct elapaarp *)skb_put(skb, sizeof(struct elapaarp)); skb->protocol = htons(ETH_P_ATALK); skb->nh.raw = skb->h.raw = (void *) eah; skb->dev = dev; /* * Set up the ARP. */ eah->hw_type = htons(AARP_HW_TYPE_ETHERNET); eah->pa_type = htons(ETH_P_ATALK); eah->hw_len = ETH_ALEN; eah->pa_len = AARP_PA_ALEN; eah->function = htons(AARP_PROBE); memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN); eah->pa_src_zero= 0; eah->pa_src_net = us->s_net; eah->pa_src_node= us->s_node; memset(eah->hw_dst, '\0', ETH_ALEN); eah->pa_dst_zero= 0; eah->pa_dst_net = us->s_net; eah->pa_dst_node= us->s_node; /* * Add ELAP headers and set target to the AARP multicast. */ aarp_dl->datalink_header(aarp_dl, skb, aarp_eth_multicast); /* * Send it. */ dev_queue_xmit(skb); } /* * Handle an aarp timer expire * * Must run under the aarp_lock. */ static void __aarp_expire_timer(struct aarp_entry **n) { struct aarp_entry *t; while ((*n) != NULL) { /* Expired ? */ if(time_after(jiffies, (*n)->expires_at)) { t = *n; *n = (*n)->next; __aarp_expire(t); } else { n = &((*n)->next); } } } /* * Kick all pending requests 5 times a second. * * Must run under the aarp_lock. */ static void __aarp_kick(struct aarp_entry **n) { struct aarp_entry *t; while ((*n) != NULL) { /* Expired - if this will be the 11th transmit, we delete * instead. */ if ((*n)->xmit_count >= sysctl_aarp_retransmit_limit) { t = *n; *n = (*n)->next; __aarp_expire(t); } else { __aarp_send_query(*n); n = &((*n)->next); } } } /* * A device has gone down. Take all entries referring to the device * and remove them. * * Must run under the aarp_lock. */ static void __aarp_expire_device(struct aarp_entry **n, struct net_device *dev) { struct aarp_entry *t; while ((*n) != NULL) { if ((*n)->dev == dev) { t = *n; *n = (*n)->next; __aarp_expire(t); } else { n = &((*n)->next); } } } /* * Handle the timer event */ static void aarp_expire_timeout(unsigned long unused) { int ct; spin_lock_bh(&aarp_lock); for (ct = 0; ct < AARP_HASH_SIZE; ct++) { __aarp_expire_timer(&resolved[ct]); __aarp_kick(&unresolved[ct]); __aarp_expire_timer(&unresolved[ct]); __aarp_expire_timer(&proxies[ct]); } spin_unlock_bh(&aarp_lock); mod_timer(&aarp_timer, jiffies + (unresolved_count ? sysctl_aarp_tick_time: sysctl_aarp_expiry_time)); } /* * Network device notifier chain handler. */ static int aarp_device_event(struct notifier_block *this, unsigned long event, void *ptr) { int ct; if (event == NETDEV_DOWN) { spin_lock_bh(&aarp_lock); for (ct = 0; ct < AARP_HASH_SIZE; ct++) { __aarp_expire_device(&resolved[ct], ptr); __aarp_expire_device(&unresolved[ct], ptr); __aarp_expire_device(&proxies[ct], ptr); } spin_unlock_bh(&aarp_lock); } return NOTIFY_DONE; } /* * Create a new aarp entry. This must use GFP_ATOMIC because it * runs while holding spinlocks. */ static struct aarp_entry *aarp_alloc(void) { struct aarp_entry *a = kmalloc(sizeof(struct aarp_entry), GFP_ATOMIC); if (a == NULL) return NULL; skb_queue_head_init(&a->packet_queue); return a; } /* * Find an entry. We might return an expired but not yet purged entry. We * don't care as it will do no harm. * * This must run under the aarp_lock. */ static struct aarp_entry *__aarp_find_entry(struct aarp_entry *list, struct net_device *dev, struct at_addr *sat) { while (list) { if (list->target_addr.s_net == sat->s_net && list->target_addr.s_node == sat->s_node && list->dev == dev) break; list = list->next; } return list; } /* Called from the DDP code, and thus must be exported. */ void aarp_proxy_remove(struct net_device *dev, struct at_addr *sa) { struct aarp_entry *a; int hash; hash = sa->s_node % (AARP_HASH_SIZE-1); spin_lock_bh(&aarp_lock); a = __aarp_find_entry(proxies[hash], dev, sa); if (a) a->expires_at = jiffies - 1; spin_unlock_bh(&aarp_lock); } /* This must run under aarp_lock. */ static struct at_addr *__aarp_proxy_find(struct net_device *dev, struct at_addr *sa) { struct at_addr *retval; struct aarp_entry *a; int hash; hash = sa->s_node % (AARP_HASH_SIZE-1); retval = NULL; a = __aarp_find_entry(proxies[hash], dev, sa); if (a != NULL) retval = sa; return retval; } /* * Probe a Phase 1 device or a device that requires its Net:Node to * be set via an ioctl. */ void aarp_send_probe_phase1(struct atalk_iface *iface) { struct ifreq atreq; struct sockaddr_at *sa = (struct sockaddr_at *)&atreq.ifr_addr; sa->sat_addr.s_node = iface->address.s_node; sa->sat_addr.s_net = ntohs(iface->address.s_net); /* We pass the Net:Node to the drivers/cards by a Device ioctl. */ if (!(iface->dev->do_ioctl(iface->dev, &atreq, SIOCSIFADDR))) { (void)iface->dev->do_ioctl(iface->dev, &atreq, SIOCGIFADDR); if ((iface->address.s_net != htons(sa->sat_addr.s_net)) || (iface->address.s_node != sa->sat_addr.s_node)) iface->status |= ATIF_PROBE_FAIL; iface->address.s_net = htons(sa->sat_addr.s_net); iface->address.s_node = sa->sat_addr.s_node; } } void aarp_probe_network(struct atalk_iface *atif) { if(atif->dev->type == ARPHRD_LOCALTLK || atif->dev->type == ARPHRD_PPP) { aarp_send_probe_phase1(atif); } else { unsigned int count; for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) { aarp_send_probe(atif->dev, &atif->address); /* * Defer 1/10th */ current->state = TASK_INTERRUPTIBLE; schedule_timeout(HZ/10); if (atif->status & ATIF_PROBE_FAIL) break; } } } int aarp_proxy_probe_network(struct atalk_iface *atif, struct at_addr *sa) { struct aarp_entry *entry; unsigned int count; int hash, retval; /* * we don't currently support LocalTalk or PPP for proxy AARP; * if someone wants to try and add it, have fun */ if (atif->dev->type == ARPHRD_LOCALTLK) return -EPROTONOSUPPORT; if (atif->dev->type == ARPHRD_PPP) return -EPROTONOSUPPORT; /* * create a new AARP entry with the flags set to be published -- * we need this one to hang around even if it's in use */ entry = aarp_alloc(); if (entry == NULL) return -ENOMEM; entry->expires_at = -1; entry->status = ATIF_PROBE; entry->target_addr.s_node = sa->s_node; entry->target_addr.s_net = sa->s_net; entry->dev = atif->dev; spin_lock_bh(&aarp_lock); hash = sa->s_node % (AARP_HASH_SIZE - 1); entry->next = proxies[hash]; proxies[hash] = entry; for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) { aarp_send_probe(atif->dev, sa); /* * Defer 1/10th */ current->state = TASK_INTERRUPTIBLE; spin_unlock_bh(&aarp_lock); schedule_timeout(HZ/10); spin_lock_bh(&aarp_lock); if (entry->status & ATIF_PROBE_FAIL) break; } retval = 1; if (entry->status & ATIF_PROBE_FAIL) { /* free the entry */ entry->expires_at = jiffies - 1; /* return network full */ retval = -EADDRINUSE; } else { /* clear the probing flag */ entry->status &= ~ATIF_PROBE; } spin_unlock_bh(&aarp_lock); return retval; } /* * Send a DDP frame */ int aarp_send_ddp(struct net_device *dev,struct sk_buff *skb, struct at_addr *sa, void *hwaddr) { static char ddp_eth_multicast[ETH_ALEN] = { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF }; int hash; struct aarp_entry *a; skb->nh.raw = skb->data; /* * Check for LocalTalk first */ if (dev->type == ARPHRD_LOCALTLK) { struct at_addr *at = atalk_find_dev_addr(dev); struct ddpehdr *ddp = (struct ddpehdr *)skb->data; int ft = 2; /* * Compressible ? * * IFF: src_net==dest_net==device_net * (zero matches anything) */ if( ( ddp->deh_snet==0 || at->s_net==ddp->deh_snet) && ( ddp->deh_dnet==0 || at->s_net==ddp->deh_dnet) ) { skb_pull(skb, sizeof(struct ddpehdr) - 4); /* * The upper two remaining bytes are the port * numbers we just happen to need. Now put the * length in the lower two. */ *((__u16 *)skb->data) = htons(skb->len); ft = 1; } /* * Nice and easy. No AARP type protocols occur here * so we can just shovel it out with a 3 byte LLAP header */ skb_push(skb, 3); skb->data[0] = sa->s_node; skb->data[1] = at->s_node; skb->data[2] = ft; if (skb->sk) skb->priority = skb->sk->priority; skb->dev = dev; dev_queue_xmit(skb); return 1; } /* * On a PPP link we neither compress nor aarp. */ if (dev->type == ARPHRD_PPP) { skb->protocol = htons(ETH_P_PPPTALK); if (skb->sk) skb->priority = skb->sk->priority; skb->dev = dev; dev_queue_xmit(skb); return 1; } /* * Non ELAP we cannot do. */ if (dev->type != ARPHRD_ETHER) return -1; skb->dev = dev; skb->protocol = htons(ETH_P_ATALK); hash = sa->s_node % (AARP_HASH_SIZE - 1); /* * Do we have a resolved entry ? */ if (sa->s_node == ATADDR_BCAST) { ddp_dl->datalink_header(ddp_dl, skb, ddp_eth_multicast); if (skb->sk) skb->priority = skb->sk->priority; dev_queue_xmit(skb); return 1; } spin_lock_bh(&aarp_lock); a = __aarp_find_entry(resolved[hash], dev, sa); if (a != NULL) { /* * Return 1 and fill in the address */ a->expires_at = jiffies + (sysctl_aarp_expiry_time * 10); ddp_dl->datalink_header(ddp_dl, skb, a->hwaddr); if(skb->sk) skb->priority = skb->sk->priority; dev_queue_xmit(skb); spin_unlock_bh(&aarp_lock); return 1; } /* * Do we have an unresolved entry: This is the less common path */ a = __aarp_find_entry(unresolved[hash], dev, sa); if (a != NULL) { /* * Queue onto the unresolved queue */ skb_queue_tail(&a->packet_queue, skb); spin_unlock_bh(&aarp_lock); return 0; } /* * Allocate a new entry */ a = aarp_alloc(); if (a == NULL) { /* * Whoops slipped... good job it's an unreliable * protocol 8) */ spin_unlock_bh(&aarp_lock); return -1; } /* * Set up the queue */ skb_queue_tail(&a->packet_queue, skb); a->expires_at = jiffies + sysctl_aarp_resolve_time; a->dev = dev; a->next = unresolved[hash]; a->target_addr = *sa; a->xmit_count = 0; unresolved[hash] = a; unresolved_count++; /* * Send an initial request for the address */ __aarp_send_query(a); /* * Switch to fast timer if needed (That is if this is the * first unresolved entry to get added) */ if (unresolved_count == 1) mod_timer(&aarp_timer, jiffies + sysctl_aarp_tick_time); /* * Now finally, it is safe to drop the lock. */ spin_unlock_bh(&aarp_lock); /* * Tell the ddp layer we have taken over for this frame. */ return 0; } /* * An entry in the aarp unresolved queue has become resolved. Send * all the frames queued under it. * * Must run under aarp_lock. */ static void __aarp_resolved(struct aarp_entry **list, struct aarp_entry *a, int hash) { struct sk_buff *skb; while (*list != NULL) { if (*list == a) { unresolved_count--; *list = a->next; /* * Move into the resolved list */ a->next = resolved[hash]; resolved[hash] = a; /* * Kick frames off */ while ((skb = skb_dequeue(&a->packet_queue)) != NULL) { a->expires_at = jiffies + (sysctl_aarp_expiry_time*10); ddp_dl->datalink_header(ddp_dl, skb, a->hwaddr); if (skb->sk) skb->priority = skb->sk->priority; dev_queue_xmit(skb); } } else { list = &((*list)->next); } } } /* * This is called by the SNAP driver whenever we see an AARP SNAP * frame. We currently only support Ethernet. */ static int aarp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt) { struct elapaarp *ea=(struct elapaarp *)skb->h.raw; struct aarp_entry *a; struct at_addr sa, *ma, da; int hash; struct atalk_iface *ifa; /* * We only do Ethernet SNAP AARP. */ if (dev->type != ARPHRD_ETHER) { kfree_skb(skb); return 0; } /* * Frame size ok ? */ if (!skb_pull(skb, sizeof(*ea))) { kfree_skb(skb); return 0; } ea->function = ntohs(ea->function); /* * Sanity check fields. */ if (ea->function < AARP_REQUEST || ea->function > AARP_PROBE || ea->hw_len != ETH_ALEN || ea->pa_len != AARP_PA_ALEN || ea->pa_src_zero != 0 || ea->pa_dst_zero != 0) { kfree_skb(skb); return 0; } /* * Looks good. */ hash = ea->pa_src_node % (AARP_HASH_SIZE - 1); /* * Build an address. */ sa.s_node = ea->pa_src_node; sa.s_net = ea->pa_src_net; /* * Process the packet. * Check for replies of me. */ ifa = atalk_find_dev(dev); if (ifa == NULL) { kfree_skb(skb); return 1; } if (ifa->status & ATIF_PROBE) { if (ifa->address.s_node == ea->pa_dst_node && ifa->address.s_net == ea->pa_dst_net) { /* * Fail the probe (in use) */ ifa->status |= ATIF_PROBE_FAIL; kfree_skb(skb); return 1; } } /* * Check for replies of proxy AARP entries */ da.s_node = ea->pa_dst_node; da.s_net = ea->pa_dst_net; spin_lock_bh(&aarp_lock); a = __aarp_find_entry(proxies[hash], dev, &da); if (a != NULL) { if (a->status & ATIF_PROBE) { a->status |= ATIF_PROBE_FAIL; spin_unlock_bh(&aarp_lock); /* * we do not respond to probe or request packets for * this address while we are probing this address */ kfree_skb(skb); return 1; } } switch (ea->function) { case AARP_REPLY: if (unresolved_count == 0) /* Speed up */ break; /* * Find the entry. */ if ((a = __aarp_find_entry(unresolved[hash],dev,&sa)) == NULL || (dev != a->dev)) break; /* * We can fill one in - this is good. */ memcpy(a->hwaddr,ea->hw_src,ETH_ALEN); __aarp_resolved(&unresolved[hash],a,hash); if (unresolved_count == 0) mod_timer(&aarp_timer, jiffies + sysctl_aarp_expiry_time); break; case AARP_REQUEST: case AARP_PROBE: /* * If it is my address set ma to my address and reply. We can treat probe and * request the same. Probe simply means we shouldn't cache the querying host, * as in a probe they are proposing an address not using one. * * Support for proxy-AARP added. We check if the address is one * of our proxies before we toss the packet out. */ sa.s_node = ea->pa_dst_node; sa.s_net = ea->pa_dst_net; /* * See if we have a matching proxy. */ ma = __aarp_proxy_find(dev, &sa); if (!ma) { ma = &ifa->address; } else { /* * We need to make a copy of the entry. */ da.s_node = sa.s_node; da.s_net = da.s_net; ma = &da; } if (ea->function == AARP_PROBE) { /* A probe implies someone trying to get an * address. So as a precaution flush any * entries we have for this address. */ struct aarp_entry *a = __aarp_find_entry( resolved[sa.s_node%(AARP_HASH_SIZE-1)], skb->dev, &sa); /* Make it expire next tick - that avoids us * getting into a probe/flush/learn/probe/flush/learn * cycle during probing of a slow to respond host addr. */ if (a != NULL) { a->expires_at = jiffies - 1; mod_timer(&aarp_timer, jiffies + sysctl_aarp_tick_time); } } if (sa.s_node != ma->s_node) break; if (sa.s_net && ma->s_net && sa.s_net != ma->s_net) break; sa.s_node = ea->pa_src_node; sa.s_net = ea->pa_src_net; /* * aarp_my_address has found the address to use for us. */ aarp_send_reply(dev, ma, &sa, ea->hw_src); break; }; spin_unlock_bh(&aarp_lock); kfree_skb(skb); return 1; } static struct notifier_block aarp_notifier = { aarp_device_event, NULL, 0 }; static char aarp_snap_id[] = { 0x00, 0x00, 0x00, 0x80, 0xF3 }; void __init aarp_proto_init(void) { if ((aarp_dl = register_snap_client(aarp_snap_id, aarp_rcv)) == NULL) printk(KERN_CRIT "Unable to register AARP with SNAP.\n"); init_timer(&aarp_timer); aarp_timer.function = aarp_expire_timeout; aarp_timer.data = 0; aarp_timer.expires = jiffies + sysctl_aarp_expiry_time; add_timer(&aarp_timer); register_netdevice_notifier(&aarp_notifier); } /* * Remove the AARP entries associated with a device. */ void aarp_device_down(struct net_device *dev) { int ct; spin_lock_bh(&aarp_lock); for (ct = 0; ct < AARP_HASH_SIZE; ct++) { __aarp_expire_device(&resolved[ct], dev); __aarp_expire_device(&unresolved[ct], dev); __aarp_expire_device(&proxies[ct], dev); } spin_unlock_bh(&aarp_lock); } /* * Called from proc fs */ static int aarp_get_info(char *buffer, char **start, off_t offset, int length) { /* we should dump all our AARP entries */ struct aarp_entry *entry; int len, ct; len = sprintf(buffer, "%-10.10s ""%-10.10s""%-18.18s""%12.12s""%12.12s"" xmit_count status\n", "address","device","hw addr","last_sent", "expires"); spin_lock_bh(&aarp_lock); for (ct = 0; ct < AARP_HASH_SIZE; ct++) { for (entry = resolved[ct]; entry; entry = entry->next) { len+= sprintf(buffer+len,"%6u:%-3u ", (unsigned int)ntohs(entry->target_addr.s_net), (unsigned int)(entry->target_addr.s_node)); len+= sprintf(buffer+len,"%-10.10s", entry->dev->name); len+= sprintf(buffer+len,"%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X", (int)(entry->hwaddr[0] & 0x000000FF), (int)(entry->hwaddr[1] & 0x000000FF), (int)(entry->hwaddr[2] & 0x000000FF), (int)(entry->hwaddr[3] & 0x000000FF), (int)(entry->hwaddr[4] & 0x000000FF), (int)(entry->hwaddr[5] & 0x000000FF)); len+= sprintf(buffer+len,"%12lu ""%12lu ", (unsigned long)entry->last_sent, (unsigned long)entry->expires_at); len+=sprintf(buffer+len,"%10u", (unsigned int)entry->xmit_count); len+=sprintf(buffer+len," resolved\n"); } } for (ct = 0; ct < AARP_HASH_SIZE; ct++) { for (entry = unresolved[ct]; entry; entry = entry->next) { len+= sprintf(buffer+len,"%6u:%-3u ", (unsigned int)ntohs(entry->target_addr.s_net), (unsigned int)(entry->target_addr.s_node)); len+= sprintf(buffer+len,"%-10.10s", entry->dev->name); len+= sprintf(buffer+len,"%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X", (int)(entry->hwaddr[0] & 0x000000FF), (int)(entry->hwaddr[1] & 0x000000FF), (int)(entry->hwaddr[2] & 0x000000FF), (int)(entry->hwaddr[3] & 0x000000FF), (int)(entry->hwaddr[4] & 0x000000FF), (int)(entry->hwaddr[5] & 0x000000FF)); len+= sprintf(buffer+len,"%12lu ""%12lu ", (unsigned long)entry->last_sent, (unsigned long)entry->expires_at); len+=sprintf(buffer+len,"%10u", (unsigned int)entry->xmit_count); len+=sprintf(buffer+len," unresolved\n"); } } for (ct = 0; ct < AARP_HASH_SIZE; ct++) { for (entry = proxies[ct]; entry; entry = entry->next) { len+= sprintf(buffer+len,"%6u:%-3u ", (unsigned int)ntohs(entry->target_addr.s_net), (unsigned int)(entry->target_addr.s_node)); len+= sprintf(buffer+len,"%-10.10s", entry->dev->name); len+= sprintf(buffer+len,"%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X", (int)(entry->hwaddr[0] & 0x000000FF), (int)(entry->hwaddr[1] & 0x000000FF), (int)(entry->hwaddr[2] & 0x000000FF), (int)(entry->hwaddr[3] & 0x000000FF), (int)(entry->hwaddr[4] & 0x000000FF), (int)(entry->hwaddr[5] & 0x000000FF)); len+= sprintf(buffer+len,"%12lu ""%12lu ", (unsigned long)entry->last_sent, (unsigned long)entry->expires_at); len+=sprintf(buffer+len,"%10u", (unsigned int)entry->xmit_count); len+=sprintf(buffer+len," proxy\n"); } } spin_unlock_bh(&aarp_lock); return len; } #ifdef MODULE /* * General module cleanup. Called from cleanup_module() in ddp.c. */ void aarp_cleanup_module(void) { del_timer(&aarp_timer); unregister_netdevice_notifier(&aarp_notifier); unregister_snap_client(aarp_snap_id); } #endif /* MODULE */ #ifdef CONFIG_PROC_FS void aarp_register_proc_fs(void) { proc_net_create("aarp", 0, aarp_get_info); } void aarp_unregister_proc_fs(void) { proc_net_remove("aarp"); } #endif #endif /* CONFIG_ATALK || CONFIG_ATALK_MODULE */