/* * Routines having to do with the 'struct sk_buff' memory handlers. * * Authors: Alan Cox * Florian La Roche * * Fixes: * Alan Cox : Fixed the worst of the load balancer bugs. * Dave Platt : Interrupt stacking fix. * Richard Kooijman : Timestamp fixes. * Alan Cox : Changed buffer format. * Alan Cox : destructor hook for AF_UNIX etc. * Linus Torvalds : Better skb_clone. * Alan Cox : Added skb_copy. * Alan Cox : Added all the changed routines Linus * only put in the headers * Ray VanTassle : Fixed --skb->lock in free * Alan Cox : skb_copy copy arp field * * NOTE: * The __skb_ routines should be called with interrupts * disabled, or you better be *real* sure that the operation is atomic * with respect to whatever list is being frobbed (e.g. via lock_sock() * or via disabling bottom half handlers, etc). * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ /* * The functions in this file will not compile correctly with gcc 2.4.x */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Resource tracking variables */ static atomic_t net_skbcount = ATOMIC_INIT(0); static atomic_t net_allocs = ATOMIC_INIT(0); static atomic_t net_fails = ATOMIC_INIT(0); extern atomic_t ip_frag_mem; /* * Strings we don't want inline's duplicating */ const char skb_push_errstr[]="skpush:under: %p:%d"; const char skb_put_errstr[] ="skput:over: %p:%d"; void show_net_buffers(void) { printk(KERN_INFO "Networking buffers in use : %u\n", atomic_read(&net_skbcount)); printk(KERN_INFO "Total network buffer allocations : %u\n", atomic_read(&net_allocs)); printk(KERN_INFO "Total failed network buffer allocs : %u\n", atomic_read(&net_fails)); #ifdef CONFIG_INET printk(KERN_INFO "IP fragment buffer size : %u\n", atomic_read(&ip_frag_mem)); #endif } /* * Free an sk_buff. Release anything attached to the buffer. */ void __kfree_skb(struct sk_buff *skb) { if (skb->list) printk(KERN_WARNING "Warning: kfree_skb passed an skb still " "on a list (from %p).\n", __builtin_return_address(0)); dst_release(skb->dst); if(skb->destructor) skb->destructor(skb); kfree_skbmem(skb); } /* * Allocate a new skbuff. We do this ourselves so we can fill in a few 'private' * fields and also do memory statistics to find all the [BEEP] leaks. * * Note: For now we put the header after the data to get better cache * usage. Once we have a good cache aware kmalloc this will cease * to be a good idea. */ struct sk_buff *alloc_skb(unsigned int size,int priority) { struct sk_buff *skb; unsigned char *bptr; int len; if (in_interrupt() && priority!=GFP_ATOMIC) { static int count = 0; if (++count < 5) { printk(KERN_ERR "alloc_skb called nonatomically " "from interrupt %p\n", __builtin_return_address(0)); priority = GFP_ATOMIC; } } /* * FIXME: We could do with an architecture dependant * 'alignment mask'. */ /* Allow for alignments. Make a multiple of 16 bytes */ size = (size + 15) & ~15; len = size; /* And stick the control itself on the end */ size += sizeof(struct sk_buff); /* * Allocate some space */ bptr = kmalloc(size,priority); if (bptr == NULL) { atomic_inc(&net_fails); return NULL; } /* * Now we play a little game with the caches. Linux kmalloc is * a bit cache dumb, in fact its just about maximally non * optimal for typical kernel buffers. We actually run faster * by doing the following. Which is to deliberately put the * skb at the _end_ not the start of the memory block. */ atomic_inc(&net_allocs); skb = (struct sk_buff *)(bptr + size) - 1; atomic_set(&skb->count, 1); /* only one reference to this */ skb->data_skb = skb; /* and we're our own data skb */ skb->pkt_type = PACKET_HOST; /* Default type */ skb->pkt_bridged = 0; /* Not bridged */ skb->prev = skb->next = NULL; skb->list = NULL; skb->sk = NULL; skb->truesize=size; skb->stamp.tv_sec=0; /* No idea about time */ skb->ip_summed = 0; skb->security = 0; /* By default packets are insecure */ skb->dst = NULL; skb->destructor = NULL; memset(skb->cb, 0, sizeof(skb->cb)); skb->priority = 0; atomic_inc(&net_skbcount); atomic_set(&skb->users, 1); /* Load the data pointers. */ skb->head = bptr; skb->data = bptr; skb->tail = bptr; skb->end = bptr + len; skb->len = 0; skb->inclone = 0; return skb; } /* * Free an skbuff by memory */ extern inline void __kfree_skbmem(struct sk_buff *skb) { /* don't do anything if somebody still uses us */ if (atomic_dec_and_test(&skb->count)) { kfree(skb->head); atomic_dec(&net_skbcount); } } void kfree_skbmem(struct sk_buff *skb) { void * addr = skb->head; /* don't do anything if somebody still uses us */ if (atomic_dec_and_test(&skb->count)) { int free_head = (skb->inclone != SKB_CLONE_INLINE); /* free the skb that contains the actual data if we've clone()'d */ if (skb->data_skb != skb) { addr = skb; __kfree_skbmem(skb->data_skb); } if (free_head) kfree(addr); atomic_dec(&net_skbcount); } } /* * Duplicate an sk_buff. The new one is not owned by a socket. */ struct sk_buff *skb_clone(struct sk_buff *skb, int priority) { struct sk_buff *n; int inbuff = 0; if (!skb->inclone && skb_tailroom(skb) >= sizeof(struct sk_buff)) { n = ((struct sk_buff *) skb->end) - 1; skb->end -= sizeof(struct sk_buff); skb->inclone = SKB_CLONE_ORIG; inbuff = SKB_CLONE_INLINE; } else { n = kmalloc(sizeof(*n), priority); if (!n) return NULL; } memcpy(n, skb, sizeof(*n)); atomic_set(&n->count, 1); skb = skb->data_skb; atomic_inc(&skb->count); atomic_inc(&net_allocs); atomic_inc(&net_skbcount); dst_clone(n->dst); n->data_skb = skb; n->next = n->prev = NULL; n->list = NULL; n->sk = NULL; n->tries = 0; atomic_set(&n->users, 1); n->inclone = inbuff; n->destructor = NULL; return n; } /* * This is slower, and copies the whole data area */ struct sk_buff *skb_copy(struct sk_buff *skb, int priority) { struct sk_buff *n; unsigned long offset; /* * Allocate the copy buffer */ n=alloc_skb(skb->end - skb->head, priority); if(n==NULL) return NULL; /* * Shift between the two data areas in bytes */ offset=n->head-skb->head; /* Set the data pointer */ skb_reserve(n,skb->data-skb->head); /* Set the tail pointer and length */ skb_put(n,skb->len); /* Copy the bytes */ memcpy(n->head,skb->head,skb->end-skb->head); n->list=NULL; n->sk=NULL; n->when=skb->when; n->dev=skb->dev; n->priority=skb->priority; n->protocol=skb->protocol; n->dst=dst_clone(skb->dst); n->h.raw=skb->h.raw+offset; n->nh.raw=skb->nh.raw+offset; n->mac.raw=skb->mac.raw+offset; n->seq=skb->seq; n->end_seq=skb->end_seq; n->ack_seq=skb->ack_seq; memcpy(n->cb, skb->cb, sizeof(skb->cb)); n->used=skb->used; n->arp=skb->arp; n->tries=0; atomic_set(&n->users, 1); n->pkt_type=skb->pkt_type; n->stamp=skb->stamp; n->destructor = NULL; n->security=skb->security; return n; } struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, int newheadroom) { struct sk_buff *n; unsigned long offset; int headroom = skb_headroom(skb); /* * Allocate the copy buffer */ n=alloc_skb(skb->truesize+newheadroom-headroom-sizeof(struct sk_buff), GFP_ATOMIC); if(n==NULL) return NULL; skb_reserve(n,newheadroom); /* * Shift between the two data areas in bytes */ offset=n->data-skb->data; /* Set the tail pointer and length */ skb_put(n,skb->len); /* Copy the bytes */ memcpy(n->data,skb->data,skb->len); n->list=NULL; n->sk=NULL; n->when=skb->when; n->priority=skb->priority; n->protocol=skb->protocol; n->dev=skb->dev; n->dst=dst_clone(skb->dst); n->h.raw=skb->h.raw+offset; n->nh.raw=skb->nh.raw+offset; n->mac.raw=skb->mac.raw+offset; memcpy(n->cb, skb->cb, sizeof(skb->cb)); n->seq=skb->seq; n->end_seq=skb->end_seq; n->ack_seq=skb->ack_seq; n->used=skb->used; n->arp=skb->arp; n->tries=0; atomic_set(&n->users, 1); n->pkt_type=skb->pkt_type; n->stamp=skb->stamp; n->destructor = NULL; n->security=skb->security; return n; } struct sk_buff *dev_alloc_skb(unsigned int length) { struct sk_buff *skb; skb = alloc_skb(length+16, GFP_ATOMIC); if (skb) skb_reserve(skb,16); return skb; }