/* * NET3 IP device support routines. * * Version: $Id: devinet.c,v 1.14 1997/10/10 22:40:44 davem Exp $ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Derived from the IP parts of dev.c 1.0.19 * Authors: Ross Biro, * Fred N. van Kempen, * Mark Evans, * * Additional Authors: * Alan Cox, * Alexey Kuznetsov, * * Changes: * Alexey Kuznetsov: pa_* fields are replaced with ifaddr lists. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_KERNELD #include #endif #include #include #include #ifdef CONFIG_RTNETLINK static void rtmsg_ifa(int event, struct in_ifaddr *); #else #define rtmsg_ifa(a,b) do { } while(0) #endif static struct notifier_block *inetaddr_chain; static void inet_del_ifa(struct in_device *in_dev, struct in_ifaddr **ifap, int destroy); int inet_ifa_count; int inet_dev_count; static struct in_ifaddr * inet_alloc_ifa(void) { struct in_ifaddr *ifa; ifa = kmalloc(sizeof(*ifa), GFP_KERNEL); if (ifa) { memset(ifa, 0, sizeof(*ifa)); inet_ifa_count++; } return ifa; } static __inline__ void inet_free_ifa(struct in_ifaddr *ifa) { kfree_s(ifa, sizeof(*ifa)); inet_ifa_count--; } struct in_device *inetdev_init(struct device *dev) { struct in_device *in_dev; in_dev = kmalloc(sizeof(*in_dev), GFP_KERNEL); if (!in_dev) return NULL; inet_dev_count++; memset(in_dev, 0, sizeof(*in_dev)); in_dev->dev = dev; dev->ip_ptr = in_dev; ip_mc_init_dev(in_dev); return in_dev; } static void inetdev_destroy(struct in_device *in_dev) { struct in_ifaddr *ifa; ip_mc_destroy_dev(in_dev); while ((ifa = in_dev->ifa_list) != NULL) { inet_del_ifa(in_dev, &in_dev->ifa_list, 0); inet_free_ifa(ifa); } in_dev->dev->ip_ptr = NULL; kfree(in_dev); } struct in_ifaddr * inet_addr_onlink(struct in_device *in_dev, u32 a, u32 b) { for_primary_ifa(in_dev) { if (inet_ifa_match(a, ifa)) { if (!b || inet_ifa_match(b, ifa)) return ifa; } } endfor_ifa(in_dev); return NULL; } static void inet_del_ifa(struct in_device *in_dev, struct in_ifaddr **ifap, int destroy) { struct in_ifaddr *ifa1 = *ifap; struct in_ifaddr *ifa; /* 1. Unlink it */ *ifap = ifa1->ifa_next; /* 2. Deleting primary ifaddr forces deletion all secondaries */ if (!(ifa1->ifa_flags&IFA_F_SECONDARY)) { while ((ifa=*ifap) != NULL) { if (ifa1->ifa_mask != ifa->ifa_mask || !inet_ifa_match(ifa1->ifa_address, ifa)) { ifap = &ifa->ifa_next; continue; } *ifap = ifa->ifa_next; rtmsg_ifa(RTM_DELADDR, ifa); notifier_call_chain(&inetaddr_chain, NETDEV_DOWN, ifa); inet_free_ifa(ifa); } } /* 3. Announce address deletion */ /* Send message first, then call notifier. At first sight, FIB update triggered by notifier will refer to already deleted ifaddr, that could confuse netlink listeners. It is not true: look, gated sees that route deleted and if it still thinks that ifaddr is valid, it will try to restore deleted routes... Grr. So that, this order is correct. */ rtmsg_ifa(RTM_DELADDR, ifa1); notifier_call_chain(&inetaddr_chain, NETDEV_DOWN, ifa1); if (destroy) { inet_free_ifa(ifa1); if (in_dev->ifa_list == NULL) inetdev_destroy(in_dev); } } static int inet_insert_ifa(struct in_device *in_dev, struct in_ifaddr *ifa) { struct in_ifaddr *ifa1, **ifap, **last_primary; if (ifa->ifa_local == 0) { inet_free_ifa(ifa); return 0; } ifa->ifa_flags &= ~IFA_F_SECONDARY; last_primary = &in_dev->ifa_list; for (ifap=&in_dev->ifa_list; (ifa1=*ifap)!=NULL; ifap=&ifa1->ifa_next) { if (!(ifa1->ifa_flags&IFA_F_SECONDARY) && ifa->ifa_scope <= ifa1->ifa_scope) last_primary = &ifa1->ifa_next; if (ifa1->ifa_mask == ifa->ifa_mask && inet_ifa_match(ifa1->ifa_address, ifa)) { if (ifa1->ifa_local == ifa->ifa_local) { inet_free_ifa(ifa); return -EEXIST; } if (ifa1->ifa_scope != ifa->ifa_scope) { inet_free_ifa(ifa); return -EINVAL; } ifa->ifa_flags |= IFA_F_SECONDARY; } } if (!(ifa->ifa_flags&IFA_F_SECONDARY)) ifap = last_primary; cli(); ifa->ifa_next = *ifap; *ifap = ifa; sti(); /* Send message first, then call notifier. Notifier will trigger FIB update, so that listeners of netlink will know about new ifaddr */ rtmsg_ifa(RTM_NEWADDR, ifa); notifier_call_chain(&inetaddr_chain, NETDEV_UP, ifa); return 0; } static int inet_set_ifa(struct device *dev, struct in_ifaddr *ifa) { struct in_device *in_dev = dev->ip_ptr; if (in_dev == NULL) { in_dev = inetdev_init(dev); if (in_dev == NULL) { inet_free_ifa(ifa); return -ENOBUFS; } } ifa->ifa_dev = in_dev; if (LOOPBACK(ifa->ifa_local)) ifa->ifa_scope = RT_SCOPE_HOST; return inet_insert_ifa(in_dev, ifa); } struct in_device *inetdev_by_index(int ifindex) { struct device *dev; dev = dev_get_by_index(ifindex); if (dev) return dev->ip_ptr; return NULL; } struct in_ifaddr *inet_ifa_byprefix(struct in_device *in_dev, u32 prefix, u32 mask) { for_primary_ifa(in_dev) { if (ifa->ifa_mask == mask && inet_ifa_match(prefix, ifa)) return ifa; } endfor_ifa(in_dev); return NULL; } #ifdef CONFIG_RTNETLINK /* rtm_{add|del} functions are not reenterable, so that this structure can be made static */ int inet_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct kern_ifa *k_ifa = arg; struct in_device *in_dev; struct ifaddrmsg *ifm = NLMSG_DATA(nlh); struct in_ifaddr *ifa, **ifap; if ((in_dev = inetdev_by_index(ifm->ifa_index)) == NULL) return -EADDRNOTAVAIL; for (ifap=&in_dev->ifa_list; (ifa=*ifap)!=NULL; ifap=&ifa->ifa_next) { if ((k_ifa->ifa_local && memcmp(k_ifa->ifa_local, &ifa->ifa_local, 4)) || (k_ifa->ifa_label && strcmp(k_ifa->ifa_label, ifa->ifa_label)) || (k_ifa->ifa_address && (ifm->ifa_prefixlen != ifa->ifa_prefixlen || !inet_ifa_match(*(u32*)k_ifa->ifa_address, ifa)))) continue; inet_del_ifa(in_dev, ifap, 1); return 0; } return -EADDRNOTAVAIL; } int inet_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct kern_ifa *k_ifa = arg; struct device *dev; struct in_device *in_dev; struct ifaddrmsg *ifm = NLMSG_DATA(nlh); struct in_ifaddr *ifa; if (ifm->ifa_prefixlen > 32 || k_ifa->ifa_local == NULL) return -EINVAL; if ((dev = dev_get_by_index(ifm->ifa_index)) == NULL) return -ENODEV; if ((in_dev = dev->ip_ptr) == NULL) { in_dev = inetdev_init(dev); if (!in_dev) return -ENOBUFS; } if ((ifa = inet_alloc_ifa()) == NULL) return -ENOBUFS; if (k_ifa->ifa_address == NULL) k_ifa->ifa_address = k_ifa->ifa_local; memcpy(&ifa->ifa_local, k_ifa->ifa_local, 4); memcpy(&ifa->ifa_address, k_ifa->ifa_address, 4); ifa->ifa_prefixlen = ifm->ifa_prefixlen; ifa->ifa_mask = inet_make_mask(ifm->ifa_prefixlen); if (k_ifa->ifa_broadcast) memcpy(&ifa->ifa_broadcast, k_ifa->ifa_broadcast, 4); if (k_ifa->ifa_anycast) memcpy(&ifa->ifa_anycast, k_ifa->ifa_anycast, 4); ifa->ifa_flags = ifm->ifa_flags; ifa->ifa_scope = ifm->ifa_scope; ifa->ifa_dev = in_dev; if (k_ifa->ifa_label) memcpy(ifa->ifa_label, k_ifa->ifa_label, IFNAMSIZ); else memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); return inet_insert_ifa(in_dev, ifa); } #endif /* * Determine a default network mask, based on the IP address. */ static __inline__ int inet_abc_len(u32 addr) { if (ZERONET(addr)) return 0; addr = ntohl(addr); if (IN_CLASSA(addr)) return 8; if (IN_CLASSB(addr)) return 16; if (IN_CLASSC(addr)) return 24; /* * Something else, probably a multicast. */ return -1; } int devinet_ioctl(unsigned int cmd, void *arg) { struct ifreq ifr; struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr; struct in_device *in_dev; struct in_ifaddr **ifap = NULL; struct in_ifaddr *ifa = NULL; struct device *dev; #ifdef CONFIG_IP_ALIAS char *colon; #endif int exclusive = 0; int ret = 0; /* * Fetch the caller's info block into kernel space */ if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) return -EFAULT; ifr.ifr_name[IFNAMSIZ-1] = 0; #ifdef CONFIG_IP_ALIAS colon = strchr(ifr.ifr_name, ':'); if (colon) *colon = 0; #endif #ifdef CONFIG_KERNELD dev_load(ifr.ifr_name); #endif switch(cmd) { case SIOCGIFADDR: /* Get interface address */ case SIOCGIFBRDADDR: /* Get the broadcast address */ case SIOCGIFDSTADDR: /* Get the destination address */ case SIOCGIFNETMASK: /* Get the netmask for the interface */ case SIOCGIFPFLAGS: /* Get per device sysctl controls */ /* Note that this ioctls will not sleep, so that we do not impose a lock. One day we will be forced to put shlock here (I mean SMP) */ memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; break; case SIOCSIFFLAGS: if (!suser()) return -EACCES; rtnl_lock(); exclusive = 1; break; case SIOCSIFADDR: /* Set interface address (and family) */ case SIOCSIFBRDADDR: /* Set the broadcast address */ case SIOCSIFDSTADDR: /* Set the destination address */ case SIOCSIFNETMASK: /* Set the netmask for the interface */ case SIOCSIFPFLAGS: /* Set per device sysctl controls */ if (!suser()) return -EACCES; if (sin->sin_family != AF_INET) return -EINVAL; rtnl_lock(); exclusive = 1; break; default: return -EINVAL; } if ((dev = dev_get(ifr.ifr_name)) == NULL) { ret = -ENODEV; goto done; } #ifdef CONFIG_IP_ALIAS if (colon) *colon = ':'; #endif if ((in_dev=dev->ip_ptr) != NULL) { for (ifap=&in_dev->ifa_list; (ifa=*ifap) != NULL; ifap=&ifa->ifa_next) if (strcmp(ifr.ifr_name, ifa->ifa_label) == 0) break; } if (ifa == NULL && cmd != SIOCSIFADDR && cmd != SIOCSIFFLAGS) { ret = -EADDRNOTAVAIL; goto done; } switch(cmd) { case SIOCGIFADDR: /* Get interface address */ sin->sin_addr.s_addr = ifa->ifa_local; goto rarok; case SIOCGIFBRDADDR: /* Get the broadcast address */ sin->sin_addr.s_addr = ifa->ifa_broadcast; goto rarok; case SIOCGIFDSTADDR: /* Get the destination address */ sin->sin_addr.s_addr = ifa->ifa_address; goto rarok; case SIOCGIFNETMASK: /* Get the netmask for the interface */ sin->sin_addr.s_addr = ifa->ifa_mask; goto rarok; case SIOCGIFPFLAGS: ifr.ifr_flags = in_dev->flags; goto rarok; case SIOCSIFFLAGS: #ifdef CONFIG_IP_ALIAS if (colon) { if (ifa == NULL) { ret = -EADDRNOTAVAIL; break; } if (!(ifr.ifr_flags&IFF_UP)) inet_del_ifa(in_dev, ifap, 1); break; } #endif ret = dev_change_flags(dev, ifr.ifr_flags); break; case SIOCSIFPFLAGS: in_dev->flags = ifr.ifr_flags; break; case SIOCSIFADDR: /* Set interface address (and family) */ if (inet_abc_len(sin->sin_addr.s_addr) < 0) { ret = -EINVAL; break; } if (!ifa) { if ((ifa = inet_alloc_ifa()) == NULL) { ret = -ENOBUFS; break; } #ifdef CONFIG_IP_ALIAS if (colon) memcpy(ifa->ifa_label, ifr.ifr_name, IFNAMSIZ); else #endif memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); } else { ret = 0; if (ifa->ifa_local == sin->sin_addr.s_addr) break; inet_del_ifa(in_dev, ifap, 0); ifa->ifa_broadcast = 0; ifa->ifa_anycast = 0; ifa->ifa_prefixlen = 32; ifa->ifa_mask = inet_make_mask(32); } ifa->ifa_address = ifa->ifa_local = sin->sin_addr.s_addr; if (!(dev->flags&IFF_POINTOPOINT)) { ifa->ifa_prefixlen = inet_abc_len(ifa->ifa_address); ifa->ifa_mask = inet_make_mask(ifa->ifa_prefixlen); if ((dev->flags&IFF_BROADCAST) && ifa->ifa_prefixlen < 31) ifa->ifa_broadcast = ifa->ifa_address|~ifa->ifa_mask; } ret = inet_set_ifa(dev, ifa); break; case SIOCSIFBRDADDR: /* Set the broadcast address */ if (ifa->ifa_broadcast != sin->sin_addr.s_addr) { inet_del_ifa(in_dev, ifap, 0); ifa->ifa_broadcast = sin->sin_addr.s_addr; inet_insert_ifa(in_dev, ifa); } break; case SIOCSIFDSTADDR: /* Set the destination address */ if (ifa->ifa_address != sin->sin_addr.s_addr) { if (inet_abc_len(sin->sin_addr.s_addr) < 0) { ret = -EINVAL; break; } inet_del_ifa(in_dev, ifap, 0); ifa->ifa_address = sin->sin_addr.s_addr; inet_insert_ifa(in_dev, ifa); } break; case SIOCSIFNETMASK: /* Set the netmask for the interface */ /* * The mask we set must be legal. */ if (bad_mask(sin->sin_addr.s_addr, 0)) { ret = -EINVAL; break; } if (ifa->ifa_mask != sin->sin_addr.s_addr) { inet_del_ifa(in_dev, ifap, 0); ifa->ifa_mask = sin->sin_addr.s_addr; ifa->ifa_prefixlen = inet_mask_len(ifa->ifa_mask); inet_set_ifa(dev, ifa); } break; } done: if (exclusive) rtnl_unlock(); return ret; rarok: if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) return -EFAULT; return 0; } static int inet_gifconf(struct device *dev, char *buf, int len) { struct in_device *in_dev = dev->ip_ptr; struct in_ifaddr *ifa; struct ifreq ifr; int done=0; if (in_dev==NULL || (ifa=in_dev->ifa_list)==NULL) return 0; for ( ; ifa; ifa = ifa->ifa_next) { if (!buf) { done += sizeof(ifr); continue; } if (len < sizeof(ifr)) return done; memset(&ifr, 0, sizeof(struct ifreq)); if (ifa->ifa_label) strcpy(ifr.ifr_name, ifa->ifa_label); else strcpy(ifr.ifr_name, dev->name); (*(struct sockaddr_in *) &ifr.ifr_addr).sin_family = AF_INET; (*(struct sockaddr_in *) &ifr.ifr_addr).sin_addr.s_addr = ifa->ifa_local; if (copy_to_user(buf, &ifr, sizeof(struct ifreq))) return -EFAULT; buf += sizeof(struct ifreq); len -= sizeof(struct ifreq); done += sizeof(struct ifreq); } return done; } u32 inet_select_addr(struct device *dev, u32 dst, int scope) { u32 addr = 0; struct in_device *in_dev = dev->ip_ptr; if (in_dev == NULL) return 0; for_primary_ifa(in_dev) { if (ifa->ifa_scope > scope) continue; addr = ifa->ifa_local; if (!dst || inet_ifa_match(dst, ifa)) return addr; } endfor_ifa(in_dev); return addr; } /* * Device notifier */ int register_inetaddr_notifier(struct notifier_block *nb) { return notifier_chain_register(&inetaddr_chain, nb); } int unregister_inetaddr_notifier(struct notifier_block *nb) { return notifier_chain_unregister(&inetaddr_chain,nb); } static int inetdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct device *dev = ptr; struct in_device *in_dev = dev->ip_ptr; if (in_dev == NULL) return NOTIFY_DONE; switch (event) { case NETDEV_REGISTER: if (in_dev) printk(KERN_DEBUG "inetdev_event: bug\n"); dev->ip_ptr = NULL; break; case NETDEV_UP: if (dev == &loopback_dev) { struct in_ifaddr *ifa; if ((ifa = inet_alloc_ifa()) != NULL) { ifa->ifa_local = ifa->ifa_address = htonl(INADDR_LOOPBACK); ifa->ifa_prefixlen = 8; ifa->ifa_mask = inet_make_mask(8); ifa->ifa_dev = in_dev; ifa->ifa_scope = RT_SCOPE_HOST; inet_insert_ifa(in_dev, ifa); } } ip_mc_up(in_dev); break; case NETDEV_DOWN: ip_mc_down(in_dev); break; case NETDEV_UNREGISTER: inetdev_destroy(in_dev); break; } return NOTIFY_DONE; } struct notifier_block ip_netdev_notifier={ inetdev_event, NULL, 0 }; #ifdef CONFIG_RTNETLINK static int inet_fill_ifaddr(struct sk_buff *skb, struct in_ifaddr *ifa, pid_t pid, u32 seq, int event) { struct ifaddrmsg *ifm; struct nlmsghdr *nlh; unsigned char *b = skb->tail; nlh = NLMSG_PUT(skb, pid, seq, event, sizeof(*ifm)); ifm = NLMSG_DATA(nlh); ifm->ifa_family = AF_INET; ifm->ifa_prefixlen = ifa->ifa_prefixlen; ifm->ifa_flags = ifa->ifa_flags; ifm->ifa_scope = ifa->ifa_scope; ifm->ifa_index = ifa->ifa_dev->dev->ifindex; if (ifa->ifa_prefixlen) RTA_PUT(skb, IFA_ADDRESS, 4, &ifa->ifa_address); if (ifa->ifa_local) RTA_PUT(skb, IFA_LOCAL, 4, &ifa->ifa_local); if (ifa->ifa_broadcast) RTA_PUT(skb, IFA_BROADCAST, 4, &ifa->ifa_broadcast); if (ifa->ifa_anycast) RTA_PUT(skb, IFA_ANYCAST, 4, &ifa->ifa_anycast); if (ifa->ifa_label[0]) RTA_PUT(skb, IFA_LABEL, IFNAMSIZ, &ifa->ifa_label); nlh->nlmsg_len = skb->tail - b; return skb->len; nlmsg_failure: rtattr_failure: skb_put(skb, b - skb->tail); return -1; } static int inet_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb) { int idx, ip_idx; int s_idx, s_ip_idx; struct device *dev; struct in_device *in_dev; struct in_ifaddr *ifa; s_idx = cb->args[0]; s_ip_idx = ip_idx = cb->args[1]; for (dev=dev_base, idx=0; dev; dev = dev->next, idx++) { if (idx < s_idx) continue; if (idx > s_idx) s_ip_idx = 0; if ((in_dev = dev->ip_ptr) == NULL) continue; for (ifa = in_dev->ifa_list, ip_idx = 0; ifa; ifa = ifa->ifa_next, ip_idx++) { if (ip_idx < s_ip_idx) continue; if (inet_fill_ifaddr(skb, ifa, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, RTM_NEWADDR) <= 0) goto done; } } done: cb->args[0] = idx; cb->args[1] = ip_idx; return skb->len; } static void rtmsg_ifa(int event, struct in_ifaddr * ifa) { struct sk_buff *skb; int size = NLMSG_SPACE(sizeof(struct ifaddrmsg)+128); skb = alloc_skb(size, GFP_KERNEL); if (!skb) { netlink_set_err(rtnl, 0, RTMGRP_IPV4_IFADDR, ENOBUFS); return; } if (inet_fill_ifaddr(skb, ifa, 0, 0, event) < 0) { kfree_skb(skb, 0); netlink_set_err(rtnl, 0, RTMGRP_IPV4_IFADDR, EINVAL); return; } NETLINK_CB(skb).dst_groups = RTMGRP_IPV4_IFADDR; netlink_broadcast(rtnl, skb, 0, RTMGRP_IPV4_IFADDR, GFP_KERNEL); } static struct rtnetlink_link inet_rtnetlink_table[RTM_MAX-RTM_BASE+1] = { { NULL, NULL, }, { NULL, NULL, }, { NULL, rtnetlink_dump_ifinfo, }, { NULL, NULL, }, { inet_rtm_newaddr, NULL, }, { inet_rtm_deladdr, NULL, }, { NULL, inet_dump_ifaddr, }, { NULL, NULL, }, { inet_rtm_newroute, NULL, }, { inet_rtm_delroute, NULL, }, { inet_rtm_getroute, inet_dump_fib, }, { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, #ifdef CONFIG_IP_MULTIPLE_TABLES { inet_rtm_newrule, NULL, }, { inet_rtm_delrule, NULL, }, { NULL, inet_dump_rules, }, { NULL, NULL, }, #else { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, #endif }; #endif /* CONFIG_RTNETLINK */ #ifdef CONFIG_IP_PNP_BOOTP /* * Addition and deletion of fake interface addresses * for sending of BOOTP packets. In this case, we must * set the local address to zero which is not permitted * otherwise. */ __initfunc(int inet_add_bootp_addr(struct device *dev)) { struct in_device *in_dev = dev->ip_ptr; struct in_ifaddr *ifa; if (!in_dev && !(in_dev = inetdev_init(dev))) return -ENOBUFS; if (!(ifa = inet_alloc_ifa())) return -ENOBUFS; ifa->ifa_dev = in_dev; in_dev->ifa_list = ifa; rtmsg_ifa(RTM_NEWADDR, ifa); notifier_call_chain(&inetaddr_chain, NETDEV_UP, ifa); return 0; } __initfunc(void inet_del_bootp_addr(struct device *dev)) { if (dev->ip_ptr) inetdev_destroy(dev->ip_ptr); } #endif __initfunc(void devinet_init(void)) { register_gifconf(AF_INET, inet_gifconf); register_netdevice_notifier(&ip_netdev_notifier); #ifdef CONFIG_RTNETLINK rtnetlink_links[AF_INET] = inet_rtnetlink_table; #endif }