/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * The IP fragmentation functionality. * * Version: $Id: ip_fragment.c,v 1.29 1997/11/22 12:31:05 freitag Exp $ * * Authors: Fred N. van Kempen * Alan Cox * * Fixes: * Alan Cox : Split from ip.c , see ip_input.c for history. * David S. Miller : Begin massive cleanup... * Andi Kleen : Add sysctls. * xxxx : Overlapfrag bug. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Fragment cache limits. We will commit 256K at one time. Should we * cross that limit we will prune down to 192K. This should cope with * even the most extreme cases without allowing an attacker to measurably * harm machine performance. */ int sysctl_ipfrag_high_thresh = 256*1024; int sysctl_ipfrag_low_thresh = 192*1024; int sysctl_ipfrag_time = IP_FRAG_TIME; /* Describe an IP fragment. */ struct ipfrag { int offset; /* offset of fragment in IP datagram */ int end; /* last byte of data in datagram */ int len; /* length of this fragment */ struct sk_buff *skb; /* complete received fragment */ unsigned char *ptr; /* pointer into real fragment data */ struct ipfrag *next; /* linked list pointers */ struct ipfrag *prev; }; /* Describe an entry in the "incomplete datagrams" queue. */ struct ipq { struct iphdr *iph; /* pointer to IP header */ struct ipq *next; /* linked list pointers */ struct ipfrag *fragments; /* linked list of received fragments */ int len; /* total length of original datagram */ short ihlen; /* length of the IP header */ struct timer_list timer; /* when will this queue expire? */ struct ipq **pprev; struct device *dev; /* Device - for icmp replies */ }; #define IPQ_HASHSZ 64 struct ipq *ipq_hash[IPQ_HASHSZ]; #define ipqhashfn(id, saddr, daddr, prot) \ ((((id) >> 1) ^ (saddr) ^ (daddr) ^ (prot)) & (IPQ_HASHSZ - 1)) atomic_t ip_frag_mem = ATOMIC_INIT(0); /* Memory used for fragments */ char *in_ntoa(__u32 in); /* Memory Tracking Functions. */ extern __inline__ void frag_kfree_skb(struct sk_buff *skb, int type) { atomic_sub(skb->truesize, &ip_frag_mem); kfree_skb(skb,type); } extern __inline__ void frag_kfree_s(void *ptr, int len) { atomic_sub(len, &ip_frag_mem); kfree_s(ptr,len); } extern __inline__ void *frag_kmalloc(int size, int pri) { void *vp=kmalloc(size,pri); if(!vp) return NULL; atomic_add(size, &ip_frag_mem); return vp; } /* Create a new fragment entry. */ static struct ipfrag *ip_frag_create(int offset, int end, struct sk_buff *skb, unsigned char *ptr) { struct ipfrag *fp; fp = (struct ipfrag *) frag_kmalloc(sizeof(struct ipfrag), GFP_ATOMIC); if (fp == NULL) { NETDEBUG(printk(KERN_ERR "IP: frag_create: no memory left !\n")); return(NULL); } /* Fill in the structure. */ fp->offset = offset; fp->end = end; fp->len = end - offset; fp->skb = skb; fp->ptr = ptr; fp->next = fp->prev = NULL; /* Charge for the SKB as well. */ atomic_add(skb->truesize, &ip_frag_mem); return(fp); } /* Find the correct entry in the "incomplete datagrams" queue for * this IP datagram, and return the queue entry address if found. */ static inline struct ipq *ip_find(struct iphdr *iph, struct dst_entry *dst) { __u16 id = iph->id; __u32 saddr = iph->saddr; __u32 daddr = iph->daddr; __u8 protocol = iph->protocol; unsigned int hash = ipqhashfn(id, saddr, daddr, protocol); struct ipq *qp; start_bh_atomic(); for(qp = ipq_hash[hash]; qp; qp = qp->next) { if(qp->iph->id == id && qp->iph->saddr == saddr && qp->iph->daddr == daddr && qp->iph->protocol == protocol) { del_timer(&qp->timer); break; } } end_bh_atomic(); return qp; } /* Remove an entry from the "incomplete datagrams" queue, either * because we completed, reassembled and processed it, or because * it timed out. */ static void ip_free(struct ipq *qp) { struct ipfrag *fp; /* Stop the timer for this entry. */ del_timer(&qp->timer); /* Remove this entry from the "incomplete datagrams" queue. */ start_bh_atomic(); if(qp->next) qp->next->pprev = qp->pprev; *qp->pprev = qp->next; end_bh_atomic(); /* Release all fragment data. */ fp = qp->fragments; while (fp) { struct ipfrag *xp = fp->next; frag_kfree_skb(fp->skb,FREE_READ); frag_kfree_s(fp, sizeof(struct ipfrag)); fp = xp; } /* Release the IP header. */ frag_kfree_s(qp->iph, 64 + 8); /* Finally, release the queue descriptor itself. */ frag_kfree_s(qp, sizeof(struct ipq)); } /* Oops, a fragment queue timed out. Kill it and send an ICMP reply. */ static void ip_expire(unsigned long arg) { struct ipq *qp = (struct ipq *) arg; /* Send an ICMP "Fragment Reassembly Timeout" message. */ ip_statistics.IpReasmTimeout++; ip_statistics.IpReasmFails++; icmp_send(qp->fragments->skb,ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); /* Nuke the fragment queue. */ ip_free(qp); } /* Memory limiting on fragments. Evictor trashes the oldest * fragment queue until we are back under the low threshold. */ static void ip_evictor(void) { while(atomic_read(&ip_frag_mem)>sysctl_ipfrag_low_thresh) { int i; /* FIXME: Make LRU queue of frag heads. -DaveM */ for(i = 0; i < IPQ_HASHSZ; i++) if(ipq_hash[i]) break; if(i >= IPQ_HASHSZ) panic("ip_evictor: memcount"); ip_free(ipq_hash[i]); } } /* Add an entry to the 'ipq' queue for a newly received IP datagram. * We will (hopefully :-) receive all other fragments of this datagram * in time, so we just create a queue for this datagram, in which we * will insert the received fragments at their respective positions. */ static struct ipq *ip_create(struct sk_buff *skb, struct iphdr *iph) { struct ipq *qp; unsigned int hash; int ihlen; qp = (struct ipq *) frag_kmalloc(sizeof(struct ipq), GFP_ATOMIC); if (qp == NULL) { NETDEBUG(printk(KERN_ERR "IP: create: no memory left !\n")); return(NULL); } /* Allocate memory for the IP header (plus 8 octets for ICMP). */ ihlen = iph->ihl * 4; qp->iph = (struct iphdr *) frag_kmalloc(64 + 8, GFP_ATOMIC); if (qp->iph == NULL) { NETDEBUG(printk(KERN_ERR "IP: create: no memory left !\n")); frag_kfree_s(qp, sizeof(struct ipq)); return NULL; } memcpy(qp->iph, iph, ihlen + 8); qp->len = 0; qp->ihlen = ihlen; qp->fragments = NULL; qp->dev = skb->dev; /* Start a timer for this entry. */ qp->timer.expires = jiffies + sysctl_ipfrag_time; /* about 30 seconds */ qp->timer.data = (unsigned long) qp; /* pointer to queue */ qp->timer.function = ip_expire; /* expire function */ add_timer(&qp->timer); /* Add this entry to the queue. */ hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol); start_bh_atomic(); if((qp->next = ipq_hash[hash]) != NULL) qp->next->pprev = &qp->next; ipq_hash[hash] = qp; qp->pprev = &ipq_hash[hash]; end_bh_atomic(); return qp; } /* See if a fragment queue is complete. */ static int ip_done(struct ipq *qp) { struct ipfrag *fp; int offset; /* Only possible if we received the final fragment. */ if (qp->len == 0) return 0; /* Check all fragment offsets to see if they connect. */ fp = qp->fragments; offset = 0; while (fp) { if (fp->offset > offset) return(0); /* fragment(s) missing */ offset = fp->end; fp = fp->next; } /* All fragments are present. */ return 1; } /* Build a new IP datagram from all its fragments. * * FIXME: We copy here because we lack an effective way of handling lists * of bits on input. Until the new skb data handling is in I'm not going * to touch this with a bargepole. */ static struct sk_buff *ip_glue(struct ipq *qp) { struct sk_buff *skb; struct iphdr *iph; struct ipfrag *fp; unsigned char *ptr; int count, len; /* Allocate a new buffer for the datagram. */ len = qp->ihlen + qp->len; if(len>65535) { if (net_ratelimit()) printk(KERN_INFO "Oversized IP packet from %d.%d.%d.%d.\n", NIPQUAD(qp->iph->saddr)); ip_statistics.IpReasmFails++; ip_free(qp); return NULL; } if ((skb = dev_alloc_skb(len)) == NULL) { ip_statistics.IpReasmFails++; NETDEBUG(printk(KERN_ERR "IP: queue_glue: no memory for gluing queue %p\n", qp)); ip_free(qp); return NULL; } /* Fill in the basic details. */ skb->mac.raw = ptr = skb->data; skb->nh.iph = iph = (struct iphdr*)skb_put(skb,len); /* Copy the original IP headers into the new buffer. */ memcpy(ptr, qp->iph, qp->ihlen); ptr += qp->ihlen; count = 0; /* Copy the data portions of all fragments into the new buffer. */ fp = qp->fragments; while(fp) { if (fp->len < 0 || count+fp->len > skb->len) { NETDEBUG(printk(KERN_ERR "Invalid fragment list: " "Fragment over size.\n")); ip_free(qp); kfree_skb(skb,FREE_WRITE); ip_statistics.IpReasmFails++; return NULL; } memcpy((ptr + fp->offset), fp->ptr, fp->len); if (!count) { skb->dst = dst_clone(fp->skb->dst); skb->dev = fp->skb->dev; } count += fp->len; fp = fp->next; } skb->pkt_type = qp->fragments->skb->pkt_type; skb->protocol = qp->fragments->skb->protocol; /* We glued together all fragments, so remove the queue entry. */ ip_free(qp); /* Done with all fragments. Fixup the new IP header. */ iph = skb->nh.iph; iph->frag_off = 0; iph->tot_len = htons((iph->ihl * 4) + count); ip_statistics.IpReasmOKs++; return skb; } /* Process an incoming IP datagram fragment. */ struct sk_buff *ip_defrag(struct sk_buff *skb) { struct iphdr *iph = skb->nh.iph; struct ipfrag *prev, *next, *tmp; struct ipfrag *tfp; struct ipq *qp; struct sk_buff *skb2; unsigned char *ptr; int flags, offset; int i, ihl, end; ip_statistics.IpReasmReqds++; /* Start by cleaning up the memory. */ if(atomic_read(&ip_frag_mem)>sysctl_ipfrag_high_thresh) ip_evictor(); /* Find the entry of this IP datagram in the "incomplete datagrams" queue. */ qp = ip_find(iph, skb->dst); /* Is this a non-fragmented datagram? */ offset = ntohs(iph->frag_off); flags = offset & ~IP_OFFSET; offset &= IP_OFFSET; if (((flags & IP_MF) == 0) && (offset == 0)) { if (qp != NULL) { /* Fragmented frame replaced by full unfragmented copy. */ ip_free(qp); } return skb; } offset <<= 3; /* offset is in 8-byte chunks */ ihl = iph->ihl * 4; /* If the queue already existed, keep restarting its timer as long * as we still are receiving fragments. Otherwise, create a fresh * queue entry. */ if (qp) { /* ANK. If the first fragment is received, * we should remember the correct IP header (with options) */ if (offset == 0) { qp->ihlen = ihl; memcpy(qp->iph, iph, ihl+8); } del_timer(&qp->timer); qp->timer.expires = jiffies + sysctl_ipfrag_time; /* about 30 seconds */ qp->timer.data = (unsigned long) qp; /* pointer to queue */ qp->timer.function = ip_expire; /* expire function */ add_timer(&qp->timer); } else { /* If we failed to create it, then discard the frame. */ if ((qp = ip_create(skb, iph)) == NULL) { kfree_skb(skb, FREE_READ); ip_statistics.IpReasmFails++; return NULL; } } /* Attempt to construct an oversize packet. */ if(ntohs(iph->tot_len)+(int)offset>65535) { if (net_ratelimit()) printk(KERN_INFO "Oversized packet received from %d.%d.%d.%d\n", NIPQUAD(iph->saddr)); frag_kfree_skb(skb, FREE_READ); ip_statistics.IpReasmFails++; return NULL; } /* Determine the position of this fragment. */ end = offset + ntohs(iph->tot_len) - ihl; /* Point into the IP datagram 'data' part. */ ptr = skb->data + ihl; /* Is this the final fragment? */ if ((flags & IP_MF) == 0) qp->len = end; /* Find out which fragments are in front and at the back of us * in the chain of fragments so far. We must know where to put * this fragment, right? */ prev = NULL; for(next = qp->fragments; next != NULL; next = next->next) { if (next->offset >= offset) break; /* bingo! */ prev = next; } /* We found where to put this one. Check for overlap with * preceding fragment, and, if needed, align things so that * any overlaps are eliminated. */ if (prev != NULL && offset < prev->end) { i = prev->end - offset; offset += i; /* ptr into datagram */ ptr += i; /* ptr into fragment data */ } /* Look for overlap with succeeding segments. * If we can merge fragments, do it. */ for(tmp=next; tmp != NULL; tmp = tfp) { tfp = tmp->next; if (tmp->offset >= end) break; /* no overlaps at all */ i = end - next->offset; /* overlap is 'i' bytes */ tmp->len -= i; /* so reduce size of */ tmp->offset += i; /* next fragment */ tmp->ptr += i; /* If we get a frag size of <= 0, remove it and the packet * that it goes with. */ if (tmp->len <= 0) { if (tmp->prev != NULL) tmp->prev->next = tmp->next; else qp->fragments = tmp->next; if (tmp->next != NULL) tmp->next->prev = tmp->prev; /* We have killed the original next frame. */ next = tfp; frag_kfree_skb(tmp->skb,FREE_READ); frag_kfree_s(tmp, sizeof(struct ipfrag)); } } /* Insert this fragment in the chain of fragments. */ tfp = NULL; tfp = ip_frag_create(offset, end, skb, ptr); /* No memory to save the fragment - so throw the lot. */ if (!tfp) { frag_kfree_skb(skb, FREE_READ); return NULL; } tfp->prev = prev; tfp->next = next; if (prev != NULL) prev->next = tfp; else qp->fragments = tfp; if (next != NULL) next->prev = tfp; /* OK, so we inserted this new fragment into the chain. * Check if we now have a full IP datagram which we can * bump up to the IP layer... */ if (ip_done(qp)) { /* Glue together the fragments. */ skb2 = ip_glue(qp); return(skb2); } return NULL; }