/* * ROSE release 003 * * This code REQUIRES 2.1.15 or higher/ NET3.038 * * This module: * This module is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * History * ROSE 001 Jonathan(G4KLX) Cloned from af_netrom.c. * Alan(GW4PTS) Hacked up for newer API stuff * Terry (VK2KTJ) Added support for variable length * address masks. * ROSE 002 Jonathan(G4KLX) Changed hdrincl to qbitincl. * Added random number facilities entry. * Variable number of ROSE devices. * ROSE 003 Jonathan(G4KLX) New timer architecture. * Implemented idle timer. * Added use count to neighbour. * Tomi(OH2BNS) Fixed rose_getname(). * Arnaldo C. Melo s/suser/capable/ + micro cleanups */ #include #if defined(CONFIG_ROSE) || defined(CONFIG_ROSE_MODULE) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* For TIOCINQ/OUTQ */ #include #include #include #include #include #include #include #include int rose_ndevs = 10; int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0; int sysctl_rose_call_request_timeout = ROSE_DEFAULT_T1; int sysctl_rose_reset_request_timeout = ROSE_DEFAULT_T2; int sysctl_rose_clear_request_timeout = ROSE_DEFAULT_T3; int sysctl_rose_no_activity_timeout = ROSE_DEFAULT_IDLE; int sysctl_rose_ack_hold_back_timeout = ROSE_DEFAULT_HB; int sysctl_rose_routing_control = ROSE_DEFAULT_ROUTING; int sysctl_rose_link_fail_timeout = ROSE_DEFAULT_FAIL_TIMEOUT; int sysctl_rose_maximum_vcs = ROSE_DEFAULT_MAXVC; int sysctl_rose_window_size = ROSE_DEFAULT_WINDOW_SIZE; static struct sock *volatile rose_list = NULL; static struct proto_ops rose_proto_ops; ax25_address rose_callsign; /* * Convert a ROSE address into text. */ char *rose2asc(rose_address *addr) { static char buffer[11]; if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 && addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 && addr->rose_addr[4] == 0x00) { strcpy(buffer, "*"); } else { sprintf(buffer, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF, addr->rose_addr[1] & 0xFF, addr->rose_addr[2] & 0xFF, addr->rose_addr[3] & 0xFF, addr->rose_addr[4] & 0xFF); } return buffer; } /* * Compare two ROSE addresses, 0 == equal. */ int rosecmp(rose_address *addr1, rose_address *addr2) { int i; for (i = 0; i < 5; i++) if (addr1->rose_addr[i] != addr2->rose_addr[i]) return 1; return 0; } /* * Compare two ROSE addresses for only mask digits, 0 == equal. */ int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask) { int i, j; if (mask > 10) return 1; for (i = 0; i < mask; i++) { j = i / 2; if ((i % 2) != 0) { if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F)) return 1; } else { if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0)) return 1; } } return 0; } static void rose_free_sock(struct sock *sk) { sk_free(sk); MOD_DEC_USE_COUNT; } static struct sock *rose_alloc_sock(void) { struct sock *sk; rose_cb *rose; if ((sk = sk_alloc(PF_ROSE, GFP_ATOMIC, 1)) == NULL) return NULL; if ((rose = kmalloc(sizeof(*rose), GFP_ATOMIC)) == NULL) { sk_free(sk); return NULL; } MOD_INC_USE_COUNT; memset(rose, 0x00, sizeof(*rose)); sk->protinfo.rose = rose; rose->sk = sk; return sk; } /* * Socket removal during an interrupt is now safe. */ static void rose_remove_socket(struct sock *sk) { struct sock *s; unsigned long flags; save_flags(flags); cli(); if ((s = rose_list) == sk) { rose_list = s->next; restore_flags(flags); return; } while (s != NULL && s->next != NULL) { if (s->next == sk) { s->next = sk->next; restore_flags(flags); return; } s = s->next; } restore_flags(flags); } /* * Kill all bound sockets on a broken link layer connection to a * particular neighbour. */ void rose_kill_by_neigh(struct rose_neigh *neigh) { struct sock *s; for (s = rose_list; s != NULL; s = s->next) { if (s->protinfo.rose->neighbour == neigh) { rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0); s->protinfo.rose->neighbour->use--; s->protinfo.rose->neighbour = NULL; } } } /* * Kill all bound sockets on a dropped device. */ static void rose_kill_by_device(struct net_device *dev) { struct sock *s; for (s = rose_list; s != NULL; s = s->next) { if (s->protinfo.rose->device == dev) { rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0); s->protinfo.rose->neighbour->use--; s->protinfo.rose->device = NULL; } } } /* * Handle device status changes. */ static int rose_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = (struct net_device *)ptr; if (event != NETDEV_DOWN) return NOTIFY_DONE; switch (dev->type) { case ARPHRD_ROSE: rose_kill_by_device(dev); break; case ARPHRD_AX25: rose_link_device_down(dev); rose_rt_device_down(dev); break; } return NOTIFY_DONE; } /* * Add a socket to the bound sockets list. */ static void rose_insert_socket(struct sock *sk) { unsigned long flags; save_flags(flags); cli(); sk->next = rose_list; rose_list = sk; restore_flags(flags); } /* * Find a socket that wants to accept the Call Request we just * received. */ static struct sock *rose_find_listener(rose_address *addr, ax25_address *call) { unsigned long flags; struct sock *s; save_flags(flags); cli(); for (s = rose_list; s != NULL; s = s->next) { if (rosecmp(&s->protinfo.rose->source_addr, addr) == 0 && ax25cmp(&s->protinfo.rose->source_call, call) == 0 && s->protinfo.rose->source_ndigis == 0 && s->state == TCP_LISTEN) { restore_flags(flags); return s; } } for (s = rose_list; s != NULL; s = s->next) { if (rosecmp(&s->protinfo.rose->source_addr, addr) == 0 && ax25cmp(&s->protinfo.rose->source_call, &null_ax25_address) == 0 && s->state == TCP_LISTEN) { restore_flags(flags); return s; } } restore_flags(flags); return NULL; } /* * Find a connected ROSE socket given my LCI and device. */ struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh) { struct sock *s; unsigned long flags; save_flags(flags); cli(); for (s = rose_list; s != NULL; s = s->next) { if (s->protinfo.rose->lci == lci && s->protinfo.rose->neighbour == neigh) { restore_flags(flags); return s; } } restore_flags(flags); return NULL; } /* * Find a unique LCI for a given device. */ unsigned int rose_new_lci(struct rose_neigh *neigh) { int lci; if (neigh->dce_mode) { for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++) if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL) return lci; } else { for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--) if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL) return lci; } return 0; } /* * Deferred destroy. */ void rose_destroy_socket(struct sock *); /* * Handler for deferred kills. */ static void rose_destroy_timer(unsigned long data) { rose_destroy_socket((struct sock *)data); } /* * This is called from user mode and the timers. Thus it protects itself against * interrupt users but doesn't worry about being called during work. * Once it is removed from the queue no interrupt or bottom half will * touch it and we are (fairly 8-) ) safe. */ void rose_destroy_socket(struct sock *sk) /* Not static as it's used by the timer */ { struct sk_buff *skb; unsigned long flags; save_flags(flags); cli(); rose_stop_heartbeat(sk); rose_stop_idletimer(sk); rose_stop_timer(sk); rose_remove_socket(sk); rose_clear_queues(sk); /* Flush the queues */ while ((skb = skb_dequeue(&sk->receive_queue)) != NULL) { if (skb->sk != sk) { /* A pending connection */ skb->sk->dead = 1; /* Queue the unaccepted socket for death */ rose_start_heartbeat(skb->sk); skb->sk->protinfo.rose->state = ROSE_STATE_0; } kfree_skb(skb); } if (atomic_read(&sk->wmem_alloc) != 0 || atomic_read(&sk->rmem_alloc) != 0) { /* Defer: outstanding buffers */ init_timer(&sk->timer); sk->timer.expires = jiffies + 10 * HZ; sk->timer.function = rose_destroy_timer; sk->timer.data = (unsigned long)sk; add_timer(&sk->timer); } else { rose_free_sock(sk); } restore_flags(flags); } /* * Handling for system calls applied via the various interfaces to a * ROSE socket object. */ static int rose_setsockopt(struct socket *sock, int level, int optname, char *optval, int optlen) { struct sock *sk = sock->sk; int opt; if (level != SOL_ROSE) return -ENOPROTOOPT; if (optlen < sizeof(int)) return -EINVAL; if (get_user(opt, (int *)optval)) return -EFAULT; switch (optname) { case ROSE_DEFER: sk->protinfo.rose->defer = opt ? 1 : 0; return 0; case ROSE_T1: if (opt < 1) return -EINVAL; sk->protinfo.rose->t1 = opt * HZ; return 0; case ROSE_T2: if (opt < 1) return -EINVAL; sk->protinfo.rose->t2 = opt * HZ; return 0; case ROSE_T3: if (opt < 1) return -EINVAL; sk->protinfo.rose->t3 = opt * HZ; return 0; case ROSE_HOLDBACK: if (opt < 1) return -EINVAL; sk->protinfo.rose->hb = opt * HZ; return 0; case ROSE_IDLE: if (opt < 0) return -EINVAL; sk->protinfo.rose->idle = opt * 60 * HZ; return 0; case ROSE_QBITINCL: sk->protinfo.rose->qbitincl = opt ? 1 : 0; return 0; default: return -ENOPROTOOPT; } } static int rose_getsockopt(struct socket *sock, int level, int optname, char *optval, int *optlen) { struct sock *sk = sock->sk; int val = 0; int len; if (level != SOL_ROSE) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; switch (optname) { case ROSE_DEFER: val = sk->protinfo.rose->defer; break; case ROSE_T1: val = sk->protinfo.rose->t1 / HZ; break; case ROSE_T2: val = sk->protinfo.rose->t2 / HZ; break; case ROSE_T3: val = sk->protinfo.rose->t3 / HZ; break; case ROSE_HOLDBACK: val = sk->protinfo.rose->hb / HZ; break; case ROSE_IDLE: val = sk->protinfo.rose->idle / (60 * HZ); break; case ROSE_QBITINCL: val = sk->protinfo.rose->qbitincl; break; default: return -ENOPROTOOPT; } len = min(len, sizeof(int)); if (put_user(len, optlen)) return -EFAULT; return copy_to_user(optval, &val, len) ? -EFAULT : 0; } static int rose_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; if (sk->state != TCP_LISTEN) { sk->protinfo.rose->dest_ndigis = 0; memset(&sk->protinfo.rose->dest_addr, '\0', ROSE_ADDR_LEN); memset(&sk->protinfo.rose->dest_call, '\0', AX25_ADDR_LEN); memset(sk->protinfo.rose->dest_digis, '\0', AX25_ADDR_LEN*ROSE_MAX_DIGIS); sk->max_ack_backlog = backlog; sk->state = TCP_LISTEN; return 0; } return -EOPNOTSUPP; } static int rose_create(struct socket *sock, int protocol) { struct sock *sk; rose_cb *rose; if (sock->type != SOCK_SEQPACKET || protocol != 0) return -ESOCKTNOSUPPORT; if ((sk = rose_alloc_sock()) == NULL) return -ENOMEM; rose = sk->protinfo.rose; sock_init_data(sock, sk); skb_queue_head_init(&rose->ack_queue); #ifdef M_BIT skb_queue_head_init(&rose->frag_queue); rose->fraglen = 0; #endif sock->ops = &rose_proto_ops; sk->protocol = protocol; init_timer(&rose->timer); init_timer(&rose->idletimer); rose->t1 = sysctl_rose_call_request_timeout; rose->t2 = sysctl_rose_reset_request_timeout; rose->t3 = sysctl_rose_clear_request_timeout; rose->hb = sysctl_rose_ack_hold_back_timeout; rose->idle = sysctl_rose_no_activity_timeout; rose->state = ROSE_STATE_0; return 0; } static struct sock *rose_make_new(struct sock *osk) { struct sock *sk; rose_cb *rose; if (osk->type != SOCK_SEQPACKET) return NULL; if ((sk = rose_alloc_sock()) == NULL) return NULL; rose = sk->protinfo.rose; sock_init_data(NULL, sk); skb_queue_head_init(&rose->ack_queue); #ifdef M_BIT skb_queue_head_init(&rose->frag_queue); rose->fraglen = 0; #endif sk->type = osk->type; sk->socket = osk->socket; sk->priority = osk->priority; sk->protocol = osk->protocol; sk->rcvbuf = osk->rcvbuf; sk->sndbuf = osk->sndbuf; sk->debug = osk->debug; sk->state = TCP_ESTABLISHED; sk->sleep = osk->sleep; sk->zapped = osk->zapped; init_timer(&rose->timer); init_timer(&rose->idletimer); rose->t1 = osk->protinfo.rose->t1; rose->t2 = osk->protinfo.rose->t2; rose->t3 = osk->protinfo.rose->t3; rose->hb = osk->protinfo.rose->hb; rose->idle = osk->protinfo.rose->idle; rose->defer = osk->protinfo.rose->defer; rose->device = osk->protinfo.rose->device; rose->qbitincl = osk->protinfo.rose->qbitincl; return sk; } static int rose_release(struct socket *sock) { struct sock *sk = sock->sk; if (sk == NULL) return 0; switch (sk->protinfo.rose->state) { case ROSE_STATE_0: rose_disconnect(sk, 0, -1, -1); rose_destroy_socket(sk); break; case ROSE_STATE_2: sk->protinfo.rose->neighbour->use--; rose_disconnect(sk, 0, -1, -1); rose_destroy_socket(sk); break; case ROSE_STATE_1: case ROSE_STATE_3: case ROSE_STATE_4: case ROSE_STATE_5: rose_clear_queues(sk); rose_stop_idletimer(sk); rose_write_internal(sk, ROSE_CLEAR_REQUEST); rose_start_t3timer(sk); sk->protinfo.rose->state = ROSE_STATE_2; sk->state = TCP_CLOSE; sk->shutdown |= SEND_SHUTDOWN; sk->state_change(sk); sk->dead = 1; sk->destroy = 1; break; default: break; } sock->sk = NULL; sk->socket = NULL; /* Not used, but we should do this. **/ return 0; } static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr; struct net_device *dev; ax25_address *user, *source; int n; if (sk->zapped == 0) return -EINVAL; if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose)) return -EINVAL; if (addr->srose_family != AF_ROSE) return -EINVAL; if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1) return -EINVAL; if (addr->srose_ndigis > ROSE_MAX_DIGIS) return -EINVAL; if ((dev = rose_dev_get(&addr->srose_addr)) == NULL) { SOCK_DEBUG(sk, "ROSE: bind failed: invalid address\n"); return -EADDRNOTAVAIL; } source = &addr->srose_call; if ((user = ax25_findbyuid(current->euid)) == NULL) { if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) return -EACCES; user = source; } sk->protinfo.rose->source_addr = addr->srose_addr; sk->protinfo.rose->source_call = *user; sk->protinfo.rose->device = dev; sk->protinfo.rose->source_ndigis = addr->srose_ndigis; if (addr_len == sizeof(struct full_sockaddr_rose)) { struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr; for (n = 0 ; n < addr->srose_ndigis ; n++) sk->protinfo.rose->source_digis[n] = full_addr->srose_digis[n]; } else { if (sk->protinfo.rose->source_ndigis == 1) { sk->protinfo.rose->source_digis[0] = addr->srose_digi; } } rose_insert_socket(sk); sk->zapped = 0; SOCK_DEBUG(sk, "ROSE: socket is bound\n"); return 0; } static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr; unsigned char cause, diagnostic; ax25_address *user; struct net_device *dev; int n; if (sk->state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { sock->state = SS_CONNECTED; return 0; /* Connect completed during a ERESTARTSYS event */ } if (sk->state == TCP_CLOSE && sock->state == SS_CONNECTING) { sock->state = SS_UNCONNECTED; return -ECONNREFUSED; } if (sk->state == TCP_ESTABLISHED) return -EISCONN; /* No reconnect on a seqpacket socket */ sk->state = TCP_CLOSE; sock->state = SS_UNCONNECTED; if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose)) return -EINVAL; if (addr->srose_family != AF_ROSE) return -EINVAL; if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1) return -EINVAL; if (addr->srose_ndigis > ROSE_MAX_DIGIS) return -EINVAL; /* Source + Destination digis should not exceed ROSE_MAX_DIGIS */ if ((sk->protinfo.rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS) return -EINVAL; if ((sk->protinfo.rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause, &diagnostic)) == NULL) return -ENETUNREACH; if ((sk->protinfo.rose->lci = rose_new_lci(sk->protinfo.rose->neighbour)) == 0) return -ENETUNREACH; if (sk->zapped) { /* Must bind first - autobinding in this may or may not work */ sk->zapped = 0; if ((dev = rose_dev_first()) == NULL) return -ENETUNREACH; if ((user = ax25_findbyuid(current->euid)) == NULL) return -EINVAL; memcpy(&sk->protinfo.rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN); sk->protinfo.rose->source_call = *user; sk->protinfo.rose->device = dev; rose_insert_socket(sk); /* Finish the bind */ } sk->protinfo.rose->dest_addr = addr->srose_addr; sk->protinfo.rose->dest_call = addr->srose_call; sk->protinfo.rose->rand = ((int)sk->protinfo.rose & 0xFFFF) + sk->protinfo.rose->lci; sk->protinfo.rose->dest_ndigis = addr->srose_ndigis; if (addr_len == sizeof(struct full_sockaddr_rose)) { struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr; for (n = 0 ; n < addr->srose_ndigis ; n++) sk->protinfo.rose->dest_digis[n] = full_addr->srose_digis[n]; } else { if (sk->protinfo.rose->dest_ndigis == 1) { sk->protinfo.rose->dest_digis[0] = addr->srose_digi; } } /* Move to connecting socket, start sending Connect Requests */ sock->state = SS_CONNECTING; sk->state = TCP_SYN_SENT; sk->protinfo.rose->state = ROSE_STATE_1; sk->protinfo.rose->neighbour->use++; rose_write_internal(sk, ROSE_CALL_REQUEST); rose_start_heartbeat(sk); rose_start_t1timer(sk); /* Now the loop */ if (sk->state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) return -EINPROGRESS; cli(); /* To avoid races on the sleep */ /* * A Connect Ack with Choke or timeout or failed routing will go to closed. */ while (sk->state == TCP_SYN_SENT) { interruptible_sleep_on(sk->sleep); if (signal_pending(current)) { sti(); return -ERESTARTSYS; } } if (sk->state != TCP_ESTABLISHED) { sti(); sock->state = SS_UNCONNECTED; return sock_error(sk); /* Always set at this point */ } sock->state = SS_CONNECTED; sti(); return 0; } static int rose_accept(struct socket *sock, struct socket *newsock, int flags) { struct sock *sk; struct sock *newsk; struct sk_buff *skb; if ((sk = sock->sk) == NULL) return -EINVAL; if (sk->type != SOCK_SEQPACKET) return -EOPNOTSUPP; if (sk->state != TCP_LISTEN) return -EINVAL; /* * The write queue this time is holding sockets ready to use * hooked into the SABM we saved */ do { cli(); if ((skb = skb_dequeue(&sk->receive_queue)) == NULL) { if (flags & O_NONBLOCK) { sti(); return -EWOULDBLOCK; } interruptible_sleep_on(sk->sleep); if (signal_pending(current)) { sti(); return -ERESTARTSYS; } } } while (skb == NULL); newsk = skb->sk; newsk->pair = NULL; newsk->socket = newsock; newsk->sleep = &newsock->wait; sti(); /* Now attach up the new socket */ skb->sk = NULL; kfree_skb(skb); sk->ack_backlog--; newsock->sk = newsk; return 0; } static int rose_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, int peer) { struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr; struct sock *sk = sock->sk; int n; if (peer != 0) { if (sk->state != TCP_ESTABLISHED) return -ENOTCONN; srose->srose_family = AF_ROSE; srose->srose_addr = sk->protinfo.rose->dest_addr; srose->srose_call = sk->protinfo.rose->dest_call; srose->srose_ndigis = sk->protinfo.rose->dest_ndigis; for (n = 0 ; n < sk->protinfo.rose->dest_ndigis ; n++) srose->srose_digis[n] = sk->protinfo.rose->dest_digis[n]; } else { srose->srose_family = AF_ROSE; srose->srose_addr = sk->protinfo.rose->source_addr; srose->srose_call = sk->protinfo.rose->source_call; srose->srose_ndigis = sk->protinfo.rose->source_ndigis; for (n = 0 ; n < sk->protinfo.rose->source_ndigis ; n++) srose->srose_digis[n] = sk->protinfo.rose->source_digis[n]; } *uaddr_len = sizeof(struct full_sockaddr_rose); return 0; } int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci) { struct sock *sk; struct sock *make; struct rose_facilities_struct facilities; int n, len; skb->sk = NULL; /* Initially we don't know who it's for */ /* * skb->data points to the rose frame start */ memset(&facilities, 0x00, sizeof(struct rose_facilities_struct)); len = (((skb->data[3] >> 4) & 0x0F) + 1) / 2; len += (((skb->data[3] >> 0) & 0x0F) + 1) / 2; if (!rose_parse_facilities(skb->data + len + 4, &facilities)) { rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76); return 0; } sk = rose_find_listener(&facilities.source_addr, &facilities.source_call); /* * We can't accept the Call Request. */ if (sk == NULL || sk->ack_backlog == sk->max_ack_backlog || (make = rose_make_new(sk)) == NULL) { rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120); return 0; } skb->sk = make; make->state = TCP_ESTABLISHED; make->protinfo.rose->lci = lci; make->protinfo.rose->dest_addr = facilities.dest_addr; make->protinfo.rose->dest_call = facilities.dest_call; make->protinfo.rose->dest_ndigis = facilities.dest_ndigis; for (n = 0 ; n < facilities.dest_ndigis ; n++) make->protinfo.rose->dest_digis[n] = facilities.dest_digis[n]; make->protinfo.rose->source_addr = facilities.source_addr; make->protinfo.rose->source_call = facilities.source_call; make->protinfo.rose->source_ndigis = facilities.source_ndigis; for (n = 0 ; n < facilities.source_ndigis ; n++) make->protinfo.rose->source_digis[n]= facilities.source_digis[n]; make->protinfo.rose->neighbour = neigh; make->protinfo.rose->device = dev; make->protinfo.rose->facilities = facilities; make->protinfo.rose->neighbour->use++; if (sk->protinfo.rose->defer) { make->protinfo.rose->state = ROSE_STATE_5; } else { rose_write_internal(make, ROSE_CALL_ACCEPTED); make->protinfo.rose->state = ROSE_STATE_3; rose_start_idletimer(make); } make->protinfo.rose->condition = 0x00; make->protinfo.rose->vs = 0; make->protinfo.rose->va = 0; make->protinfo.rose->vr = 0; make->protinfo.rose->vl = 0; sk->ack_backlog++; make->pair = sk; rose_insert_socket(make); skb_queue_head(&sk->receive_queue, skb); rose_start_heartbeat(make); if (!sk->dead) sk->data_ready(sk, skb->len); return 1; } static int rose_sendmsg(struct socket *sock, struct msghdr *msg, int len, struct scm_cookie *scm) { struct sock *sk = sock->sk; struct sockaddr_rose *usrose = (struct sockaddr_rose *)msg->msg_name; int err; struct full_sockaddr_rose srose; struct sk_buff *skb; unsigned char *asmptr; int n, size, qbit = 0; if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR)) return -EINVAL; if (sk->zapped) return -EADDRNOTAVAIL; if (sk->shutdown & SEND_SHUTDOWN) { send_sig(SIGPIPE, current, 0); return -EPIPE; } if (sk->protinfo.rose->neighbour == NULL || sk->protinfo.rose->device == NULL) return -ENETUNREACH; if (usrose != NULL) { if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose)) return -EINVAL; memset(&srose, 0, sizeof(struct full_sockaddr_rose)); memcpy(&srose, usrose, msg->msg_namelen); if (rosecmp(&sk->protinfo.rose->dest_addr, &srose.srose_addr) != 0 || ax25cmp(&sk->protinfo.rose->dest_call, &srose.srose_call) != 0) return -EISCONN; if (srose.srose_ndigis != sk->protinfo.rose->dest_ndigis) return -EISCONN; if (srose.srose_ndigis == sk->protinfo.rose->dest_ndigis) { for (n = 0 ; n < srose.srose_ndigis ; n++) if (ax25cmp(&sk->protinfo.rose->dest_digis[n], &srose.srose_digis[n]) != 0) return -EISCONN; } if (srose.srose_family != AF_ROSE) return -EINVAL; } else { if (sk->state != TCP_ESTABLISHED) return -ENOTCONN; srose.srose_family = AF_ROSE; srose.srose_addr = sk->protinfo.rose->dest_addr; srose.srose_call = sk->protinfo.rose->dest_call; srose.srose_ndigis = sk->protinfo.rose->dest_ndigis; for (n = 0 ; n < sk->protinfo.rose->dest_ndigis ; n++) srose.srose_digis[n] = sk->protinfo.rose->dest_digis[n]; } SOCK_DEBUG(sk, "ROSE: sendto: Addresses built.\n"); /* Build a packet */ SOCK_DEBUG(sk, "ROSE: sendto: building packet.\n"); size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN; if ((skb = sock_alloc_send_skb(sk, size, 0, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL) return err; skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN); /* * Put the data on the end */ SOCK_DEBUG(sk, "ROSE: Appending user data\n"); asmptr = skb->h.raw = skb_put(skb, len); memcpy_fromiovec(asmptr, msg->msg_iov, len); /* * If the Q BIT Include socket option is in force, the first * byte of the user data is the logical value of the Q Bit. */ if (sk->protinfo.rose->qbitincl) { qbit = skb->data[0]; skb_pull(skb, 1); } /* * Push down the ROSE header */ asmptr = skb_push(skb, ROSE_MIN_LEN); SOCK_DEBUG(sk, "ROSE: Building Network Header.\n"); /* Build a ROSE Network header */ asmptr[0] = ((sk->protinfo.rose->lci >> 8) & 0x0F) | ROSE_GFI; asmptr[1] = (sk->protinfo.rose->lci >> 0) & 0xFF; asmptr[2] = ROSE_DATA; if (qbit) asmptr[0] |= ROSE_Q_BIT; SOCK_DEBUG(sk, "ROSE: Built header.\n"); SOCK_DEBUG(sk, "ROSE: Transmitting buffer\n"); if (sk->state != TCP_ESTABLISHED) { kfree_skb(skb); return -ENOTCONN; } #ifdef M_BIT #define ROSE_PACLEN (256-ROSE_MIN_LEN) if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) { unsigned char header[ROSE_MIN_LEN]; struct sk_buff *skbn; int frontlen; int lg; /* Save a copy of the Header */ memcpy(header, skb->data, ROSE_MIN_LEN); skb_pull(skb, ROSE_MIN_LEN); frontlen = skb_headroom(skb); while (skb->len > 0) { if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, 0, &err)) == NULL) return err; skbn->sk = sk; skbn->free = 1; skbn->arp = 1; skb_reserve(skbn, frontlen); lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN; /* Copy the user data */ memcpy(skb_put(skbn, lg), skb->data, lg); skb_pull(skb, lg); /* Duplicate the Header */ skb_push(skbn, ROSE_MIN_LEN); memcpy(skbn->data, header, ROSE_MIN_LEN); if (skb->len > 0) skbn->data[2] |= M_BIT; skb_queue_tail(&sk->write_queue, skbn); /* Throw it on the queue */ } skb->free = 1; kfree_skb(skb, FREE_WRITE); } else { skb_queue_tail(&sk->write_queue, skb); /* Throw it on the queue */ } #else skb_queue_tail(&sk->write_queue, skb); /* Shove it onto the queue */ #endif rose_kick(sk); return len; } static int rose_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags, struct scm_cookie *scm) { struct sock *sk = sock->sk; struct sockaddr_rose *srose = (struct sockaddr_rose *)msg->msg_name; int copied, qbit; unsigned char *asmptr; struct sk_buff *skb; int n, er; /* * This works for seqpacket too. The receiver has ordered the queue for * us! We do one quick check first though */ if (sk->state != TCP_ESTABLISHED) return -ENOTCONN; /* Now we can treat all alike */ if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) return er; qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT; skb_pull(skb, ROSE_MIN_LEN); if (sk->protinfo.rose->qbitincl) { asmptr = skb_push(skb, 1); *asmptr = qbit; } skb->h.raw = skb->data; copied = skb->len; if (copied > size) { copied = size; msg->msg_flags |= MSG_TRUNC; } skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); if (srose != NULL) { srose->srose_family = AF_ROSE; srose->srose_addr = sk->protinfo.rose->dest_addr; srose->srose_call = sk->protinfo.rose->dest_call; srose->srose_ndigis = sk->protinfo.rose->dest_ndigis; if (msg->msg_namelen >= sizeof(struct full_sockaddr_rose)) { struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)msg->msg_name; for (n = 0 ; n < sk->protinfo.rose->dest_ndigis ; n++) full_srose->srose_digis[n] = sk->protinfo.rose->dest_digis[n]; msg->msg_namelen = sizeof(struct full_sockaddr_rose); } else { if (sk->protinfo.rose->dest_ndigis >= 1) { srose->srose_ndigis = 1; srose->srose_digi = sk->protinfo.rose->dest_digis[0]; } msg->msg_namelen = sizeof(struct sockaddr_rose); } } skb_free_datagram(sk, skb); return copied; } static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; switch (cmd) { case TIOCOUTQ: { long amount; amount = sk->sndbuf - atomic_read(&sk->wmem_alloc); if (amount < 0) amount = 0; return put_user(amount, (unsigned int *)arg); } case TIOCINQ: { struct sk_buff *skb; long amount = 0L; /* These two are safe on a single CPU system as only user tasks fiddle here */ if ((skb = skb_peek(&sk->receive_queue)) != NULL) amount = skb->len; return put_user(amount, (unsigned int *)arg); } case SIOCGSTAMP: if (sk != NULL) { if (sk->stamp.tv_sec == 0) return -ENOENT; return copy_to_user((void *)arg, &sk->stamp, sizeof(struct timeval)) ? -EFAULT : 0; } return -EINVAL; case SIOCGIFADDR: case SIOCSIFADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCGIFMETRIC: case SIOCSIFMETRIC: return -EINVAL; case SIOCADDRT: case SIOCDELRT: case SIOCRSCLRRT: if (!capable(CAP_NET_ADMIN)) return -EPERM; return rose_rt_ioctl(cmd, (void *)arg); case SIOCRSGCAUSE: { struct rose_cause_struct rose_cause; rose_cause.cause = sk->protinfo.rose->cause; rose_cause.diagnostic = sk->protinfo.rose->diagnostic; return copy_to_user((void *)arg, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0; } case SIOCRSSCAUSE: { struct rose_cause_struct rose_cause; if (copy_from_user(&rose_cause, (void *)arg, sizeof(struct rose_cause_struct))) return -EFAULT; sk->protinfo.rose->cause = rose_cause.cause; sk->protinfo.rose->diagnostic = rose_cause.diagnostic; return 0; } case SIOCRSSL2CALL: if (!capable(CAP_NET_ADMIN)) return -EPERM; if (ax25cmp(&rose_callsign, &null_ax25_address) != 0) ax25_listen_release(&rose_callsign, NULL); if (copy_from_user(&rose_callsign, (void *)arg, sizeof(ax25_address))) return -EFAULT; if (ax25cmp(&rose_callsign, &null_ax25_address) != 0) ax25_listen_register(&rose_callsign, NULL); return 0; case SIOCRSGL2CALL: return copy_to_user((void *)arg, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0; case SIOCRSACCEPT: if (sk->protinfo.rose->state == ROSE_STATE_5) { rose_write_internal(sk, ROSE_CALL_ACCEPTED); rose_start_idletimer(sk); sk->protinfo.rose->condition = 0x00; sk->protinfo.rose->vs = 0; sk->protinfo.rose->va = 0; sk->protinfo.rose->vr = 0; sk->protinfo.rose->vl = 0; sk->protinfo.rose->state = ROSE_STATE_3; } return 0; default: return dev_ioctl(cmd, (void *)arg); } /*NOTREACHED*/ return 0; } static int rose_get_info(char *buffer, char **start, off_t offset, int length) { struct sock *s; struct net_device *dev; const char *devname, *callsign; int len = 0; off_t pos = 0; off_t begin = 0; cli(); len += sprintf(buffer, "dest_addr dest_call src_addr src_call dev lci neigh st vs vr va t t1 t2 t3 hb idle Snd-Q Rcv-Q inode\n"); for (s = rose_list; s != NULL; s = s->next) { if ((dev = s->protinfo.rose->device) == NULL) devname = "???"; else devname = dev->name; len += sprintf(buffer + len, "%-10s %-9s ", rose2asc(&s->protinfo.rose->dest_addr), ax2asc(&s->protinfo.rose->dest_call)); if (ax25cmp(&s->protinfo.rose->source_call, &null_ax25_address) == 0) callsign = "??????-?"; else callsign = ax2asc(&s->protinfo.rose->source_call); len += sprintf(buffer + len, "%-10s %-9s %-5s %3.3X %05d %d %d %d %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n", rose2asc(&s->protinfo.rose->source_addr), callsign, devname, s->protinfo.rose->lci & 0x0FFF, (s->protinfo.rose->neighbour) ? s->protinfo.rose->neighbour->number : 0, s->protinfo.rose->state, s->protinfo.rose->vs, s->protinfo.rose->vr, s->protinfo.rose->va, ax25_display_timer(&s->protinfo.rose->timer) / HZ, s->protinfo.rose->t1 / HZ, s->protinfo.rose->t2 / HZ, s->protinfo.rose->t3 / HZ, s->protinfo.rose->hb / HZ, ax25_display_timer(&s->protinfo.rose->idletimer) / (60 * HZ), s->protinfo.rose->idle / (60 * HZ), atomic_read(&s->wmem_alloc), atomic_read(&s->rmem_alloc), s->socket != NULL ? s->socket->inode->i_ino : 0L); pos = begin + len; if (pos < offset) { len = 0; begin = pos; } if (pos > offset + length) break; } sti(); *start = buffer + (offset - begin); len -= (offset - begin); if (len > length) len = length; return(len); } static struct net_proto_family rose_family_ops = { PF_ROSE, rose_create }; static struct proto_ops SOCKOPS_WRAPPED(rose_proto_ops) = { family: PF_ROSE, release: rose_release, bind: rose_bind, connect: rose_connect, socketpair: sock_no_socketpair, accept: rose_accept, getname: rose_getname, poll: datagram_poll, ioctl: rose_ioctl, listen: rose_listen, shutdown: sock_no_shutdown, setsockopt: rose_setsockopt, getsockopt: rose_getsockopt, sendmsg: rose_sendmsg, recvmsg: rose_recvmsg, mmap: sock_no_mmap, }; #include SOCKOPS_WRAP(rose_proto, PF_ROSE); static struct notifier_block rose_dev_notifier = { rose_device_event, 0 }; static struct net_device *dev_rose; void __init rose_proto_init(struct net_proto *pro) { int i; rose_callsign = null_ax25_address; if ((dev_rose = kmalloc(rose_ndevs * sizeof(struct net_device), GFP_KERNEL)) == NULL) { printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n"); return; } memset(dev_rose, 0x00, rose_ndevs * sizeof(struct net_device)); for (i = 0; i < rose_ndevs; i++) { sprintf(dev_rose[i].name, "rose%d", i); dev_rose[i].init = rose_init; register_netdev(&dev_rose[i]); } sock_register(&rose_family_ops); register_netdevice_notifier(&rose_dev_notifier); printk(KERN_INFO "F6FBB/G4KLX ROSE for Linux. Version 0.62 for AX25.037 Linux 2.1\n"); ax25_protocol_register(AX25_P_ROSE, rose_route_frame); ax25_linkfail_register(rose_link_failed); #ifdef CONFIG_SYSCTL rose_register_sysctl(); #endif rose_loopback_init(); rose_add_loopback_neigh(); #ifdef CONFIG_PROC_FS proc_net_create("rose", 0, rose_get_info); proc_net_create("rose_neigh", 0, rose_neigh_get_info); proc_net_create("rose_nodes", 0, rose_nodes_get_info); proc_net_create("rose_routes", 0, rose_routes_get_info); #endif } #ifdef MODULE EXPORT_NO_SYMBOLS; MODULE_PARM(rose_ndevs, "i"); MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices"); MODULE_AUTHOR("Jonathan Naylor G4KLX "); MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol"); int init_module(void) { rose_proto_init(NULL); return 0; } void cleanup_module(void) { int i; #ifdef CONFIG_PROC_FS proc_net_remove("rose"); proc_net_remove("rose_neigh"); proc_net_remove("rose_nodes"); proc_net_remove("rose_routes"); #endif rose_loopback_clear(); rose_rt_free(); ax25_protocol_release(AX25_P_ROSE); ax25_linkfail_release(rose_link_failed); if (ax25cmp(&rose_callsign, &null_ax25_address) != 0) ax25_listen_release(&rose_callsign, NULL); #ifdef CONFIG_SYSCTL rose_unregister_sysctl(); #endif unregister_netdevice_notifier(&rose_dev_notifier); sock_unregister(PF_ROSE); for (i = 0; i < rose_ndevs; i++) { if (dev_rose[i].priv != NULL) { kfree(dev_rose[i].priv); dev_rose[i].priv = NULL; unregister_netdev(&dev_rose[i]); } kfree(dev_rose[i].name); } kfree(dev_rose); } #endif #endif