/* * NET An implementation of the SOCKET network access protocol. * * Version: @(#)socket.c 1.1.93 18/02/95 * * Authors: Orest Zborowski, * Ross Biro, * Fred N. van Kempen, * * Fixes: * Anonymous : NOTSOCK/BADF cleanup. Error fix in * shutdown() * Alan Cox : verify_area() fixes * Alan Cox : Removed DDI * Jonathan Kamens : SOCK_DGRAM reconnect bug * Alan Cox : Moved a load of checks to the very * top level. * Alan Cox : Move address structures to/from user * mode above the protocol layers. * Rob Janssen : Allow 0 length sends. * Alan Cox : Asynchronous I/O support (cribbed from the * tty drivers). * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) * Jeff Uphoff : Made max number of sockets command-line * configurable. * Matti Aarnio : Made the number of sockets dynamic, * to be allocated when needed, and mr. * Uphoff's max is used as max to be * allowed to allocate. * Linus : Argh. removed all the socket allocation * altogether: it's in the inode now. * Alan Cox : Made sock_alloc()/sock_release() public * for NetROM and future kernel nfsd type * stuff. * Alan Cox : sendmsg/recvmsg basics. * Tom Dyas : Export net symbols. * Marcin Dalecki : Fixed problems with CONFIG_NET="n". * Alan Cox : Added thread locking to sys_* calls * for sockets. May have errors at the * moment. * Kevin Buhr : Fixed the dumb errors in the above. * Andi Kleen : Some small cleanups, optimizations, * and fixed a copy_from_user() bug. * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) * Tigran Aivazian : Made listen(2) backlog sanity checks * protocol-independent * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * * This module is effectively the top level interface to the BSD socket * paradigm. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_KMOD) && defined(CONFIG_NET) #include #endif #include #include #include #include #include #include #include #include static int sock_no_open(struct inode *irrelevant, struct file *dontcare); static loff_t sock_lseek(struct file *file, loff_t offset, int whence); static ssize_t sock_read(struct file *file, char *buf, size_t size, loff_t *ppos); static ssize_t sock_write(struct file *file, const char *buf, size_t size, loff_t *ppos); static int sock_mmap(struct file *file, struct vm_area_struct * vma); static int sock_close(struct inode *inode, struct file *file); static unsigned int sock_poll(struct file *file, struct poll_table_struct *wait); static int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg); static int sock_fasync(int fd, struct file *filp, int on); static ssize_t sock_readv(struct file *file, const struct iovec *vector, unsigned long count, loff_t *ppos); static ssize_t sock_writev(struct file *file, const struct iovec *vector, unsigned long count, loff_t *ppos); /* * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear * in the operation structures but are done directly via the socketcall() multiplexor. */ static struct file_operations socket_file_ops = { llseek: sock_lseek, read: sock_read, write: sock_write, poll: sock_poll, ioctl: sock_ioctl, mmap: sock_mmap, open: sock_no_open, /* special open code to disallow open via /proc */ release: sock_close, fasync: sock_fasync, readv: sock_readv, writev: sock_writev }; /* * The protocol list. Each protocol is registered in here. */ static struct net_proto_family *net_families[NPROTO]; #ifdef CONFIG_SMP static atomic_t net_family_lockct = ATOMIC_INIT(0); static spinlock_t net_family_lock = SPIN_LOCK_UNLOCKED; /* The strategy is: modifications net_family vector are short, do not sleep and veeery rare, but read access should be free of any exclusive locks. */ static void net_family_write_lock(void) { spin_lock(&net_family_lock); while (atomic_read(&net_family_lockct) != 0) { spin_unlock(&net_family_lock); current->policy |= SCHED_YIELD; schedule(); spin_lock(&net_family_lock); } } static __inline__ void net_family_write_unlock(void) { spin_unlock(&net_family_lock); } static __inline__ void net_family_read_lock(void) { atomic_inc(&net_family_lockct); spin_unlock_wait(&net_family_lock); } static __inline__ void net_family_read_unlock(void) { atomic_dec(&net_family_lockct); } #else #define net_family_write_lock() do { } while(0) #define net_family_write_unlock() do { } while(0) #define net_family_read_lock() do { } while(0) #define net_family_read_unlock() do { } while(0) #endif /* * Statistics counters of the socket lists */ static union { int counter; char __pad[SMP_CACHE_BYTES]; } sockets_in_use[NR_CPUS] __cacheline_aligned = {{0}}; /* * Support routines. Move socket addresses back and forth across the kernel/user * divide and look after the messy bits. */ #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 16 for IP, 16 for IPX, 24 for IPv6, about 80 for AX.25 must be at least one bigger than the AF_UNIX size (see net/unix/af_unix.c :unix_mkname()). */ /** * move_addr_to_kernel - copy a socket address into kernel space * @uaddr: Address in user space * @kaddr: Address in kernel space * @ulen: Length in user space * * The address is copied into kernel space. If the provided address is * too long an error code of -EINVAL is returned. If the copy gives * invalid addresses -EFAULT is returned. On a success 0 is returned. */ int move_addr_to_kernel(void *uaddr, int ulen, void *kaddr) { if(ulen<0||ulen>MAX_SOCK_ADDR) return -EINVAL; if(ulen==0) return 0; if(copy_from_user(kaddr,uaddr,ulen)) return -EFAULT; return 0; } /** * move_addr_to_user - copy an address to user space * @kaddr: kernel space address * @klen: length of address in kernel * @uaddr: user space address * @ulen: pointer to user length field * * The value pointed to by ulen on entry is the buffer length available. * This is overwritten with the buffer space used. -EINVAL is returned * if an overlong buffer is specified or a negative buffer size. -EFAULT * is returned if either the buffer or the length field are not * accessible. * After copying the data up to the limit the user specifies, the true * length of the data is written over the length limit the user * specified. Zero is returned for a success. */ int move_addr_to_user(void *kaddr, int klen, void *uaddr, int *ulen) { int err; int len; if((err=get_user(len, ulen))) return err; if(len>klen) len=klen; if(len<0 || len> MAX_SOCK_ADDR) return -EINVAL; if(len) { if(copy_to_user(uaddr,kaddr,len)) return -EFAULT; } /* * "fromlen shall refer to the value before truncation.." * 1003.1g */ return __put_user(klen, ulen); } #define SOCKFS_MAGIC 0x534F434B static int sockfs_statfs(struct super_block *sb, struct statfs *buf) { buf->f_type = SOCKFS_MAGIC; buf->f_bsize = 1024; buf->f_namelen = 255; return 0; } static struct super_operations sockfs_ops = { statfs: sockfs_statfs, }; static struct super_block * sockfs_read_super(struct super_block *sb, void *data, int silent) { struct inode *root = get_empty_inode(); if (!root) return NULL; root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; root->i_uid = root->i_gid = 0; root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; root->i_sb = sb; root->i_dev = sb->s_dev; sb->s_blocksize = 1024; sb->s_blocksize_bits = 10; sb->s_magic = SOCKFS_MAGIC; sb->s_op = &sockfs_ops; sb->s_root = d_alloc(NULL, &(const struct qstr) { "socket:", 7, 0 }); if (!sb->s_root) { iput(root); return NULL; } sb->s_root->d_sb = sb; sb->s_root->d_parent = sb->s_root; d_instantiate(sb->s_root, root); return sb; } static struct vfsmount *sock_mnt; static DECLARE_FSTYPE(sock_fs_type, "sockfs", sockfs_read_super, FS_NOMOUNT|FS_SINGLE); static int sockfs_delete_dentry(struct dentry *dentry) { return 1; } static struct dentry_operations sockfs_dentry_operations = { d_delete: sockfs_delete_dentry, }; /* * Obtains the first available file descriptor and sets it up for use. * * This functions creates file structure and maps it to fd space * of current process. On success it returns file descriptor * and file struct implicitly stored in sock->file. * Note that another thread may close file descriptor before we return * from this function. We use the fact that now we do not refer * to socket after mapping. If one day we will need it, this * function will inincrement ref. count on file by 1. * * In any case returned fd MAY BE not valid! * This race condition is inavoidable * with shared fd spaces, we cannot solve is inside kernel, * but we take care of internal coherence yet. */ static int sock_map_fd(struct socket *sock) { int fd; struct qstr this; char name[32]; /* * Find a file descriptor suitable for return to the user. */ fd = get_unused_fd(); if (fd >= 0) { struct file *file = get_empty_filp(); if (!file) { put_unused_fd(fd); fd = -ENFILE; goto out; } sprintf(name, "[%lu]", sock->inode->i_ino); this.name = name; this.len = strlen(name); this.hash = sock->inode->i_ino; file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); if (!file->f_dentry) { put_filp(file); put_unused_fd(fd); fd = -ENOMEM; goto out; } file->f_dentry->d_op = &sockfs_dentry_operations; d_add(file->f_dentry, sock->inode); file->f_vfsmnt = mntget(sock_mnt); sock->file = file; file->f_op = sock->inode->i_fop = &socket_file_ops; file->f_mode = 3; file->f_flags = O_RDWR; file->f_pos = 0; fd_install(fd, file); } out: return fd; } extern __inline__ struct socket *socki_lookup(struct inode *inode) { return &inode->u.socket_i; } /** * sockfd_lookup - Go from a file number to its socket slot * @fd: file handle * @err: pointer to an error code return * * The file handle passed in is locked and the socket it is bound * too is returned. If an error occurs the err pointer is overwritten * with a negative errno code and NULL is returned. The function checks * for both invalid handles and passing a handle which is not a socket. * * On a success the socket object pointer is returned. */ struct socket *sockfd_lookup(int fd, int *err) { struct file *file; struct inode *inode; struct socket *sock; if (!(file = fget(fd))) { *err = -EBADF; return NULL; } inode = file->f_dentry->d_inode; if (!inode || !inode->i_sock || !(sock = socki_lookup(inode))) { *err = -ENOTSOCK; fput(file); return NULL; } if (sock->file != file) { printk(KERN_ERR "socki_lookup: socket file changed!\n"); sock->file = file; } return sock; } extern __inline__ void sockfd_put(struct socket *sock) { fput(sock->file); } /** * sock_alloc - allocate a socket * * Allocate a new inode and socket object. The two are bound together * and initialised. The socket is then returned. If we are out of inodes * NULL is returned. */ struct socket *sock_alloc(void) { struct inode * inode; struct socket * sock; inode = get_empty_inode(); if (!inode) return NULL; inode->i_sb = sock_mnt->mnt_sb; sock = socki_lookup(inode); inode->i_mode = S_IFSOCK|S_IRWXUGO; inode->i_sock = 1; inode->i_uid = current->fsuid; inode->i_gid = current->fsgid; sock->inode = inode; init_waitqueue_head(&sock->wait); sock->fasync_list = NULL; sock->state = SS_UNCONNECTED; sock->flags = 0; sock->ops = NULL; sock->sk = NULL; sock->file = NULL; sockets_in_use[smp_processor_id()].counter++; return sock; } /* * In theory you can't get an open on this inode, but /proc provides * a back door. Remember to keep it shut otherwise you'll let the * creepy crawlies in. */ static int sock_no_open(struct inode *irrelevant, struct file *dontcare) { return -ENXIO; } /** * sock_release - close a socket * @sock: socket to close * * The socket is released from the protocol stack if it has a release * callback, and the inode is then released if the socket is bound to * an inode not a file. */ void sock_release(struct socket *sock) { if (sock->ops) sock->ops->release(sock); if (sock->fasync_list) printk(KERN_ERR "sock_release: fasync list not empty!\n"); sockets_in_use[smp_processor_id()].counter--; if (!sock->file) { iput(sock->inode); return; } sock->file=NULL; } int sock_sendmsg(struct socket *sock, struct msghdr *msg, int size) { int err; struct scm_cookie scm; err = scm_send(sock, msg, &scm); if (err >= 0) { err = sock->ops->sendmsg(sock, msg, size, &scm); scm_destroy(&scm); } return err; } int sock_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags) { struct scm_cookie scm; memset(&scm, 0, sizeof(scm)); size = sock->ops->recvmsg(sock, msg, size, flags, &scm); if (size >= 0) scm_recv(sock, msg, &scm, flags); return size; } /* * Sockets are not seekable. */ static loff_t sock_lseek(struct file *file, loff_t offset, int whence) { return -ESPIPE; } /* * Read data from a socket. ubuf is a user mode pointer. We make sure the user * area ubuf...ubuf+size-1 is writable before asking the protocol. */ static ssize_t sock_read(struct file *file, char *ubuf, size_t size, loff_t *ppos) { struct socket *sock; struct iovec iov; struct msghdr msg; int flags; if (ppos != &file->f_pos) return -ESPIPE; if (size==0) /* Match SYS5 behaviour */ return 0; sock = socki_lookup(file->f_dentry->d_inode); msg.msg_name=NULL; msg.msg_namelen=0; msg.msg_iov=&iov; msg.msg_iovlen=1; msg.msg_control=NULL; msg.msg_controllen=0; iov.iov_base=ubuf; iov.iov_len=size; flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; return sock_recvmsg(sock, &msg, size, flags); } /* * Write data to a socket. We verify that the user area ubuf..ubuf+size-1 * is readable by the user process. */ static ssize_t sock_write(struct file *file, const char *ubuf, size_t size, loff_t *ppos) { struct socket *sock; struct msghdr msg; struct iovec iov; if (ppos != &file->f_pos) return -ESPIPE; if(size==0) /* Match SYS5 behaviour */ return 0; sock = socki_lookup(file->f_dentry->d_inode); msg.msg_name=NULL; msg.msg_namelen=0; msg.msg_iov=&iov; msg.msg_iovlen=1; msg.msg_control=NULL; msg.msg_controllen=0; msg.msg_flags=!(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; if (sock->type == SOCK_SEQPACKET) msg.msg_flags |= MSG_EOR; iov.iov_base=(void *)ubuf; iov.iov_len=size; return sock_sendmsg(sock, &msg, size); } int sock_readv_writev(int type, struct inode * inode, struct file * file, const struct iovec * iov, long count, long size) { struct msghdr msg; struct socket *sock; sock = socki_lookup(inode); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_iov = (struct iovec *) iov; msg.msg_iovlen = count; msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; /* read() does a VERIFY_WRITE */ if (type == VERIFY_WRITE) return sock_recvmsg(sock, &msg, size, msg.msg_flags); if (sock->type == SOCK_SEQPACKET) msg.msg_flags |= MSG_EOR; return sock_sendmsg(sock, &msg, size); } static ssize_t sock_readv(struct file *file, const struct iovec *vector, unsigned long count, loff_t *ppos) { size_t tot_len = 0; int i; for (i = 0 ; i < count ; i++) tot_len += vector[i].iov_len; return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode, file, vector, count, tot_len); } static ssize_t sock_writev(struct file *file, const struct iovec *vector, unsigned long count, loff_t *ppos) { size_t tot_len = 0; int i; for (i = 0 ; i < count ; i++) tot_len += vector[i].iov_len; return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode, file, vector, count, tot_len); } /* * With an ioctl arg may well be a user mode pointer, but we don't know what to do * with it - that's up to the protocol still. */ int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct socket *sock; int err; unlock_kernel(); sock = socki_lookup(inode); err = sock->ops->ioctl(sock, cmd, arg); lock_kernel(); return err; } /* No kernel lock held - perfect */ static unsigned int sock_poll(struct file *file, poll_table * wait) { struct socket *sock; /* * We can't return errors to poll, so it's either yes or no. */ sock = socki_lookup(file->f_dentry->d_inode); return sock->ops->poll(file, sock, wait); } static int sock_mmap(struct file * file, struct vm_area_struct * vma) { struct socket *sock = socki_lookup(file->f_dentry->d_inode); return sock->ops->mmap(file, sock, vma); } int sock_close(struct inode *inode, struct file *filp) { /* * It was possible the inode is NULL we were * closing an unfinished socket. */ if (!inode) { printk(KERN_DEBUG "sock_close: NULL inode\n"); return 0; } sock_fasync(-1, filp, 0); sock_release(socki_lookup(inode)); return 0; } /* * Update the socket async list * * Fasync_list locking strategy. * * 1. fasync_list is modified only under process context socket lock * i.e. under semaphore. * 2. fasync_list is used under read_lock(&sk->callback_lock) * or under socket lock. * 3. fasync_list can be used from softirq context, so that * modification under socket lock have to be enhanced with * write_lock_bh(&sk->callback_lock). * --ANK (990710) */ static int sock_fasync(int fd, struct file *filp, int on) { struct fasync_struct *fa, *fna=NULL, **prev; struct socket *sock; struct sock *sk; if (on) { fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); if(fna==NULL) return -ENOMEM; } sock = socki_lookup(filp->f_dentry->d_inode); if ((sk=sock->sk) == NULL) return -EINVAL; lock_sock(sk); prev=&(sock->fasync_list); for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) if (fa->fa_file==filp) break; if(on) { if(fa!=NULL) { write_lock_bh(&sk->callback_lock); fa->fa_fd=fd; write_unlock_bh(&sk->callback_lock); kfree(fna); goto out; } fna->fa_file=filp; fna->fa_fd=fd; fna->magic=FASYNC_MAGIC; fna->fa_next=sock->fasync_list; write_lock_bh(&sk->callback_lock); sock->fasync_list=fna; write_unlock_bh(&sk->callback_lock); } else { if (fa!=NULL) { write_lock_bh(&sk->callback_lock); *prev=fa->fa_next; write_unlock_bh(&sk->callback_lock); kfree(fa); } } out: release_sock(sock->sk); return 0; } /* This function may be called only under socket lock or callback_lock */ int sock_wake_async(struct socket *sock, int how, int band) { if (!sock || !sock->fasync_list) return -1; switch (how) { case 1: if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) break; goto call_kill; case 2: if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) break; /* fall through */ case 0: call_kill: __kill_fasync(sock->fasync_list, SIGIO, band); break; case 3: __kill_fasync(sock->fasync_list, SIGURG, band); } return 0; } int sock_create(int family, int type, int protocol, struct socket **res) { int i; struct socket *sock; /* * Check protocol is in range */ if(family<0 || family>=NPROTO) return -EINVAL; /* Compatibility. This uglymoron is moved from INET layer to here to avoid deadlock in module load. */ if (family == PF_INET && type == SOCK_PACKET) { static int warned; if (!warned) { warned = 1; printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); } family = PF_PACKET; } #if defined(CONFIG_KMOD) && defined(CONFIG_NET) /* Attempt to load a protocol module if the find failed. * * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user * requested real, full-featured networking support upon configuration. * Otherwise module support will break! */ if (net_families[family]==NULL) { char module_name[30]; sprintf(module_name,"net-pf-%d",family); request_module(module_name); } #endif net_family_read_lock(); if (net_families[family] == NULL) { i = -EINVAL; goto out; } /* * Allocate the socket and allow the family to set things up. if * the protocol is 0, the family is instructed to select an appropriate * default. */ if (!(sock = sock_alloc())) { printk(KERN_WARNING "socket: no more sockets\n"); i = -ENFILE; /* Not exactly a match, but its the closest posix thing */ goto out; } sock->type = type; if ((i = net_families[family]->create(sock, protocol)) < 0) { sock_release(sock); goto out; } *res = sock; out: net_family_read_unlock(); return i; } asmlinkage long sys_socket(int family, int type, int protocol) { int retval; struct socket *sock; retval = sock_create(family, type, protocol, &sock); if (retval < 0) goto out; retval = sock_map_fd(sock); if (retval < 0) goto out_release; out: /* It may be already another descriptor 8) Not kernel problem. */ return retval; out_release: sock_release(sock); return retval; } /* * Create a pair of connected sockets. */ asmlinkage long sys_socketpair(int family, int type, int protocol, int usockvec[2]) { struct socket *sock1, *sock2; int fd1, fd2, err; /* * Obtain the first socket and check if the underlying protocol * supports the socketpair call. */ err = sock_create(family, type, protocol, &sock1); if (err < 0) goto out; err = sock_create(family, type, protocol, &sock2); if (err < 0) goto out_release_1; err = sock1->ops->socketpair(sock1, sock2); if (err < 0) goto out_release_both; fd1 = fd2 = -1; err = sock_map_fd(sock1); if (err < 0) goto out_release_both; fd1 = err; err = sock_map_fd(sock2); if (err < 0) goto out_close_1; fd2 = err; /* fd1 and fd2 may be already another descriptors. * Not kernel problem. */ err = put_user(fd1, &usockvec[0]); if (!err) err = put_user(fd2, &usockvec[1]); if (!err) return 0; sys_close(fd2); sys_close(fd1); return err; out_close_1: sock_release(sock2); sys_close(fd1); return err; out_release_both: sock_release(sock2); out_release_1: sock_release(sock1); out: return err; } /* * Bind a name to a socket. Nothing much to do here since it's * the protocol's responsibility to handle the local address. * * We move the socket address to kernel space before we call * the protocol layer (having also checked the address is ok). */ asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen) { struct socket *sock; char address[MAX_SOCK_ADDR]; int err; if((sock = sockfd_lookup(fd,&err))!=NULL) { if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen); sockfd_put(sock); } return err; } /* * Perform a listen. Basically, we allow the protocol to do anything * necessary for a listen, and if that works, we mark the socket as * ready for listening. */ asmlinkage long sys_listen(int fd, int backlog) { struct socket *sock; int err; if ((sock = sockfd_lookup(fd, &err)) != NULL) { if ((unsigned) backlog > SOMAXCONN) backlog = SOMAXCONN; err=sock->ops->listen(sock, backlog); sockfd_put(sock); } return err; } /* * For accept, we attempt to create a new socket, set up the link * with the client, wake up the client, then return the new * connected fd. We collect the address of the connector in kernel * space and move it to user at the very end. This is unclean because * we open the socket then return an error. * * 1003.1g adds the ability to recvmsg() to query connection pending * status to recvmsg. We need to add that support in a way thats * clean when we restucture accept also. */ asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen) { struct socket *sock, *newsock; int err, len; char address[MAX_SOCK_ADDR]; sock = sockfd_lookup(fd, &err); if (!sock) goto out; err = -EMFILE; if (!(newsock = sock_alloc())) goto out_put; newsock->type = sock->type; newsock->ops = sock->ops; err = sock->ops->accept(sock, newsock, sock->file->f_flags); if (err < 0) goto out_release; if (upeer_sockaddr) { if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) { err = -ECONNABORTED; goto out_release; } err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen); if (err < 0) goto out_release; } /* File flags are not inherited via accept() unlike another OSes. */ if ((err = sock_map_fd(newsock)) < 0) goto out_release; out_put: sockfd_put(sock); out: return err; out_release: sock_release(newsock); goto out_put; } /* * Attempt to connect to a socket with the server address. The address * is in user space so we verify it is OK and move it to kernel space. * * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to * break bindings * * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and * other SEQPACKET protocols that take time to connect() as it doesn't * include the -EINPROGRESS status for such sockets. */ asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr, int addrlen) { struct socket *sock; char address[MAX_SOCK_ADDR]; int err; sock = sockfd_lookup(fd, &err); if (!sock) goto out; err = move_addr_to_kernel(uservaddr, addrlen, address); if (err < 0) goto out_put; err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen, sock->file->f_flags); out_put: sockfd_put(sock); out: return err; } /* * Get the local address ('name') of a socket object. Move the obtained * name to user space. */ asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len) { struct socket *sock; char address[MAX_SOCK_ADDR]; int len, err; sock = sockfd_lookup(fd, &err); if (!sock) goto out; err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); if (err) goto out_put; err = move_addr_to_user(address, len, usockaddr, usockaddr_len); out_put: sockfd_put(sock); out: return err; } /* * Get the remote address ('name') of a socket object. Move the obtained * name to user space. */ asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len) { struct socket *sock; char address[MAX_SOCK_ADDR]; int len, err; if ((sock = sockfd_lookup(fd, &err))!=NULL) { err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); if (!err) err=move_addr_to_user(address,len, usockaddr, usockaddr_len); sockfd_put(sock); } return err; } /* * Send a datagram to a given address. We move the address into kernel * space and check the user space data area is readable before invoking * the protocol. */ asmlinkage long sys_sendto(int fd, void * buff, size_t len, unsigned flags, struct sockaddr *addr, int addr_len) { struct socket *sock; char address[MAX_SOCK_ADDR]; int err; struct msghdr msg; struct iovec iov; sock = sockfd_lookup(fd, &err); if (!sock) goto out; iov.iov_base=buff; iov.iov_len=len; msg.msg_name=NULL; msg.msg_iov=&iov; msg.msg_iovlen=1; msg.msg_control=NULL; msg.msg_controllen=0; msg.msg_namelen=addr_len; if(addr) { err = move_addr_to_kernel(addr, addr_len, address); if (err < 0) goto out_put; msg.msg_name=address; } if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; msg.msg_flags = flags; err = sock_sendmsg(sock, &msg, len); out_put: sockfd_put(sock); out: return err; } /* * Send a datagram down a socket. */ asmlinkage long sys_send(int fd, void * buff, size_t len, unsigned flags) { return sys_sendto(fd, buff, len, flags, NULL, 0); } /* * Receive a frame from the socket and optionally record the address of the * sender. We verify the buffers are writable and if needed move the * sender address from kernel to user space. */ asmlinkage long sys_recvfrom(int fd, void * ubuf, size_t size, unsigned flags, struct sockaddr *addr, int *addr_len) { struct socket *sock; struct iovec iov; struct msghdr msg; char address[MAX_SOCK_ADDR]; int err,err2; sock = sockfd_lookup(fd, &err); if (!sock) goto out; msg.msg_control=NULL; msg.msg_controllen=0; msg.msg_iovlen=1; msg.msg_iov=&iov; iov.iov_len=size; iov.iov_base=ubuf; msg.msg_name=address; msg.msg_namelen=MAX_SOCK_ADDR; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; err=sock_recvmsg(sock, &msg, size, flags); if(err >= 0 && addr != NULL && msg.msg_namelen) { err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len); if(err2<0) err=err2; } sockfd_put(sock); out: return err; } /* * Receive a datagram from a socket. */ asmlinkage long sys_recv(int fd, void * ubuf, size_t size, unsigned flags) { return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); } /* * Set a socket option. Because we don't know the option lengths we have * to pass the user mode parameter for the protocols to sort out. */ asmlinkage long sys_setsockopt(int fd, int level, int optname, char *optval, int optlen) { int err; struct socket *sock; if ((sock = sockfd_lookup(fd, &err))!=NULL) { if (level == SOL_SOCKET) err=sock_setsockopt(sock,level,optname,optval,optlen); else err=sock->ops->setsockopt(sock, level, optname, optval, optlen); sockfd_put(sock); } return err; } /* * Get a socket option. Because we don't know the option lengths we have * to pass a user mode parameter for the protocols to sort out. */ asmlinkage long sys_getsockopt(int fd, int level, int optname, char *optval, int *optlen) { int err; struct socket *sock; if ((sock = sockfd_lookup(fd, &err))!=NULL) { if (level == SOL_SOCKET) err=sock_getsockopt(sock,level,optname,optval,optlen); else err=sock->ops->getsockopt(sock, level, optname, optval, optlen); sockfd_put(sock); } return err; } /* * Shutdown a socket. */ asmlinkage long sys_shutdown(int fd, int how) { int err; struct socket *sock; if ((sock = sockfd_lookup(fd, &err))!=NULL) { err=sock->ops->shutdown(sock, how); sockfd_put(sock); } return err; } /* * BSD sendmsg interface */ asmlinkage long sys_sendmsg(int fd, struct msghdr *msg, unsigned flags) { struct socket *sock; char address[MAX_SOCK_ADDR]; struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */ unsigned char *ctl_buf = ctl; struct msghdr msg_sys; int err, ctl_len, iov_size, total_len; err = -EFAULT; if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) goto out; sock = sockfd_lookup(fd, &err); if (!sock) goto out; /* do not move before msg_sys is valid */ err = -EINVAL; if (msg_sys.msg_iovlen > UIO_MAXIOV) goto out_put; /* Check whether to allocate the iovec area*/ err = -ENOMEM; iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); if (msg_sys.msg_iovlen > UIO_FASTIOV) { iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); if (!iov) goto out_put; } /* This will also move the address data into kernel space */ err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); if (err < 0) goto out_freeiov; total_len = err; err = -ENOBUFS; if (msg_sys.msg_controllen > INT_MAX) goto out_freeiov; ctl_len = msg_sys.msg_controllen; if (ctl_len) { if (ctl_len > sizeof(ctl)) { ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); if (ctl_buf == NULL) goto out_freeiov; } err = -EFAULT; if (copy_from_user(ctl_buf, msg_sys.msg_control, ctl_len)) goto out_freectl; msg_sys.msg_control = ctl_buf; } msg_sys.msg_flags = flags; if (sock->file->f_flags & O_NONBLOCK) msg_sys.msg_flags |= MSG_DONTWAIT; err = sock_sendmsg(sock, &msg_sys, total_len); out_freectl: if (ctl_buf != ctl) sock_kfree_s(sock->sk, ctl_buf, ctl_len); out_freeiov: if (iov != iovstack) sock_kfree_s(sock->sk, iov, iov_size); out_put: sockfd_put(sock); out: return err; } /* * BSD recvmsg interface */ asmlinkage long sys_recvmsg(int fd, struct msghdr *msg, unsigned int flags) { struct socket *sock; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov=iovstack; struct msghdr msg_sys; unsigned long cmsg_ptr; int err, iov_size, total_len, len; /* kernel mode address */ char addr[MAX_SOCK_ADDR]; /* user mode address pointers */ struct sockaddr *uaddr; int *uaddr_len; err=-EFAULT; if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) goto out; sock = sockfd_lookup(fd, &err); if (!sock) goto out; err = -EINVAL; if (msg_sys.msg_iovlen > UIO_MAXIOV) goto out_put; /* Check whether to allocate the iovec area*/ err = -ENOMEM; iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); if (msg_sys.msg_iovlen > UIO_FASTIOV) { iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); if (!iov) goto out_put; } /* * Save the user-mode address (verify_iovec will change the * kernel msghdr to use the kernel address space) */ uaddr = msg_sys.msg_name; uaddr_len = &msg->msg_namelen; err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); if (err < 0) goto out_freeiov; total_len=err; cmsg_ptr = (unsigned long)msg_sys.msg_control; msg_sys.msg_flags = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; err = sock_recvmsg(sock, &msg_sys, total_len, flags); if (err < 0) goto out_freeiov; len = err; if (uaddr != NULL && msg_sys.msg_namelen) { err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); if (err < 0) goto out_freeiov; } err = __put_user(msg_sys.msg_flags, &msg->msg_flags); if (err) goto out_freeiov; err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, &msg->msg_controllen); if (err) goto out_freeiov; err = len; out_freeiov: if (iov != iovstack) sock_kfree_s(sock->sk, iov, iov_size); out_put: sockfd_put(sock); out: return err; } /* * Perform a file control on a socket file descriptor. * * Doesn't aquire a fd lock, because no network fcntl * function sleeps currently. */ int sock_fcntl(struct file *filp, unsigned int cmd, unsigned long arg) { struct socket *sock; sock = socki_lookup (filp->f_dentry->d_inode); if (sock && sock->ops) return sock_no_fcntl(sock, cmd, arg); return(-EINVAL); } /* Argument list sizes for sys_socketcall */ #define AL(x) ((x) * sizeof(unsigned long)) static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; #undef AL /* * System call vectors. * * Argument checking cleaned up. Saved 20% in size. * This function doesn't need to set the kernel lock because * it is set by the callees. */ asmlinkage long sys_socketcall(int call, unsigned long *args) { unsigned long a[6]; unsigned long a0,a1; int err; if(call<1||call>SYS_RECVMSG) return -EINVAL; /* copy_from_user should be SMP safe. */ if (copy_from_user(a, args, nargs[call])) return -EFAULT; a0=a[0]; a1=a[1]; switch(call) { case SYS_SOCKET: err = sys_socket(a0,a1,a[2]); break; case SYS_BIND: err = sys_bind(a0,(struct sockaddr *)a1, a[2]); break; case SYS_CONNECT: err = sys_connect(a0, (struct sockaddr *)a1, a[2]); break; case SYS_LISTEN: err = sys_listen(a0,a1); break; case SYS_ACCEPT: err = sys_accept(a0,(struct sockaddr *)a1, (int *)a[2]); break; case SYS_GETSOCKNAME: err = sys_getsockname(a0,(struct sockaddr *)a1, (int *)a[2]); break; case SYS_GETPEERNAME: err = sys_getpeername(a0, (struct sockaddr *)a1, (int *)a[2]); break; case SYS_SOCKETPAIR: err = sys_socketpair(a0,a1, a[2], (int *)a[3]); break; case SYS_SEND: err = sys_send(a0, (void *)a1, a[2], a[3]); break; case SYS_SENDTO: err = sys_sendto(a0,(void *)a1, a[2], a[3], (struct sockaddr *)a[4], a[5]); break; case SYS_RECV: err = sys_recv(a0, (void *)a1, a[2], a[3]); break; case SYS_RECVFROM: err = sys_recvfrom(a0, (void *)a1, a[2], a[3], (struct sockaddr *)a[4], (int *)a[5]); break; case SYS_SHUTDOWN: err = sys_shutdown(a0,a1); break; case SYS_SETSOCKOPT: err = sys_setsockopt(a0, a1, a[2], (char *)a[3], a[4]); break; case SYS_GETSOCKOPT: err = sys_getsockopt(a0, a1, a[2], (char *)a[3], (int *)a[4]); break; case SYS_SENDMSG: err = sys_sendmsg(a0, (struct msghdr *) a1, a[2]); break; case SYS_RECVMSG: err = sys_recvmsg(a0, (struct msghdr *) a1, a[2]); break; default: err = -EINVAL; break; } return err; } /* * This function is called by a protocol handler that wants to * advertise its address family, and have it linked into the * SOCKET module. */ int sock_register(struct net_proto_family *ops) { int err; if (ops->family >= NPROTO) { printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); return -ENOBUFS; } net_family_write_lock(); err = -EEXIST; if (net_families[ops->family] == NULL) { net_families[ops->family]=ops; err = 0; } net_family_write_unlock(); return err; } /* * This function is called by a protocol handler that wants to * remove its address family, and have it unlinked from the * SOCKET module. */ int sock_unregister(int family) { if (family < 0 || family >= NPROTO) return -1; net_family_write_lock(); net_families[family]=NULL; net_family_write_unlock(); return 0; } void __init proto_init(void) { extern struct net_proto protocols[]; /* Network protocols */ struct net_proto *pro; /* Kick all configured protocols. */ pro = protocols; while (pro->name != NULL) { (*pro->init_func)(pro); pro++; } /* We're all done... */ } extern void sk_init(void); #ifdef CONFIG_BRIDGE extern int br_init(void); #endif #ifdef CONFIG_WAN_ROUTER extern void wanrouter_init(void); #endif void __init sock_init(void) { int i; printk(KERN_INFO "Linux NET4.0 for Linux 2.4\n"); printk(KERN_INFO "Based upon Swansea University Computer Society NET3.039\n"); /* * Initialize all address (protocol) families. */ for (i = 0; i < NPROTO; i++) net_families[i] = NULL; /* * Initialize sock SLAB cache. */ sk_init(); #ifdef SLAB_SKB /* * Initialize skbuff SLAB cache */ skb_init(); #endif /* * Ethernet bridge layer. */ #ifdef CONFIG_BRIDGE br_init(); #endif /* * Wan router layer. */ #ifdef CONFIG_WAN_ROUTER wanrouter_init(); #endif /* * Initialize the protocols module. */ proto_init(); register_filesystem(&sock_fs_type); sock_mnt = kern_mount(&sock_fs_type); /* * The netlink device handler may be needed early. */ #ifdef CONFIG_RTNETLINK rtnetlink_init(); #endif #ifdef CONFIG_NETLINK_DEV init_netlink(); #endif #ifdef CONFIG_NETFILTER netfilter_init(); #endif } int socket_get_info(char *buffer, char **start, off_t offset, int length) { int len, cpu; int counter = 0; for (cpu=0; cpu= len) { *start = buffer; return 0; } *start = buffer + offset; len -= offset; if (len > length) len = length; if (len < 0) len = 0; return len; }