1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
|
/*
* linux/arch/alpha/kernel/process.c
*
* Copyright (C) 1995 Linus Torvalds
*/
/*
* This file handles the architecture-dependent parts of process handling.
*/
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/malloc.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/utsname.h>
#include <linux/time.h>
#include <linux/major.h>
#include <linux/stat.h>
#include <linux/mman.h>
#include <linux/elfcore.h>
#include <linux/reboot.h>
#include <linux/console.h>
#ifdef CONFIG_RTC
#include <linux/mc146818rtc.h>
#endif
#include <asm/reg.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/hwrpb.h>
#include <asm/fpu.h>
#include "proto.h"
#include "bios32.h"
/*
* Initial task structure. Make this a per-architecture thing,
* because different architectures tend to have different
* alignment requirements and potentially different initial
* setup.
*/
unsigned long init_user_stack[1024] = { STACK_MAGIC, };
static struct vm_area_struct init_mmap = INIT_MMAP;
static struct fs_struct init_fs = INIT_FS;
static struct file * init_fd_array[NR_OPEN] = { NULL, };
static struct files_struct init_files = INIT_FILES;
static struct signal_struct init_signals = INIT_SIGNALS;
struct mm_struct init_mm = INIT_MM;
union task_union init_task_union __attribute__((section("init_task")))
= { task: INIT_TASK };
/*
* No need to acquire the kernel lock, we're entirely local..
*/
asmlinkage int
sys_sethae(unsigned long hae, unsigned long a1, unsigned long a2,
unsigned long a3, unsigned long a4, unsigned long a5,
struct pt_regs regs)
{
(®s)->hae = hae;
return 0;
}
static void __attribute__((noreturn))
do_cpu_idle(void)
{
/* An endless idle loop with no priority at all. */
current->priority = 0;
while (1) {
check_pgt_cache();
run_task_queue(&tq_scheduler);
current->counter = 0;
schedule();
}
}
#ifdef __SMP__
void
cpu_idle(void *unused)
{
do_cpu_idle();
}
#endif
asmlinkage int
sys_idle(void)
{
if (current->pid == 0)
do_cpu_idle();
return -EPERM;
}
void
generic_kill_arch (int mode, char *restart_cmd)
{
/* The following currently only has any effect on SRM. We should
fix MILO to understand it. Should be pretty easy. Also we can
support RESTART2 via the ipc_buffer machinations pictured below,
which SRM ignores. */
if (alpha_using_srm) {
struct percpu_struct *cpup;
unsigned long flags;
cpup = (struct percpu_struct *)
((unsigned long)hwrpb + hwrpb->processor_offset);
flags = cpup->flags;
/* Clear reason to "default"; clear "bootstrap in progress". */
flags &= ~0x00ff0001UL;
if (mode == LINUX_REBOOT_CMD_RESTART) {
if (!restart_cmd) {
flags |= 0x00020000UL; /* "cold bootstrap" */
cpup->ipc_buffer[0] = 0;
} else {
flags |= 0x00030000UL; /* "warm bootstrap" */
strncpy((char *)cpup->ipc_buffer, restart_cmd,
sizeof(cpup->ipc_buffer));
}
} else {
flags |= 0x00040000UL; /* "remain halted" */
}
cpup->flags = flags;
mb();
reset_for_srm();
set_hae(srm_hae);
#ifdef CONFIG_DUMMY_CONSOLE
/* This has the effect of reseting the VGA video origin. */
take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
#endif
}
#ifdef CONFIG_RTC
/* Reset rtc to defaults. */
{
unsigned char control;
cli();
/* Reset periodic interrupt frequency. */
CMOS_WRITE(0x26, RTC_FREQ_SELECT);
/* Turn on periodic interrupts. */
control = CMOS_READ(RTC_CONTROL);
control |= RTC_PIE;
CMOS_WRITE(control, RTC_CONTROL);
CMOS_READ(RTC_INTR_FLAGS);
sti();
}
#endif
if (!alpha_using_srm && mode != LINUX_REBOOT_CMD_RESTART) {
/* Unfortunately, since MILO doesn't currently understand
the hwrpb bits above, we can't reliably halt the
processor and keep it halted. So just loop. */
return;
}
if (alpha_using_srm)
srm_paging_stop();
halt();
}
void
machine_restart(char *restart_cmd)
{
alpha_mv.kill_arch(LINUX_REBOOT_CMD_RESTART, restart_cmd);
}
void
machine_halt(void)
{
alpha_mv.kill_arch(LINUX_REBOOT_CMD_HALT, NULL);
}
void machine_power_off(void)
{
alpha_mv.kill_arch(LINUX_REBOOT_CMD_POWER_OFF, NULL);
}
void show_regs(struct pt_regs * regs)
{
printk("\nps: %04lx pc: [<%016lx>]\n", regs->ps, regs->pc);
printk("rp: [<%016lx>] sp: %p\n", regs->r26, regs+1);
printk(" r0: %016lx r1: %016lx r2: %016lx r3: %016lx\n",
regs->r0, regs->r1, regs->r2, regs->r3);
printk(" r4: %016lx r5: %016lx r6: %016lx r7: %016lx\n",
regs->r4, regs->r5, regs->r6, regs->r7);
printk(" r8: %016lx r16: %016lx r17: %016lx r18: %016lx\n",
regs->r8, regs->r16, regs->r17, regs->r18);
printk("r19: %016lx r20: %016lx r21: %016lx r22: %016lx\n",
regs->r19, regs->r20, regs->r21, regs->r22);
printk("r23: %016lx r24: %016lx r25: %016lx r26: %016lx\n",
regs->r23, regs->r24, regs->r25, regs->r26);
printk("r27: %016lx r28: %016lx r29: %016lx hae: %016lx\n",
regs->r27, regs->r28, regs->gp, regs->hae);
}
/*
* Re-start a thread when doing execve()
*/
void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
{
set_fs(USER_DS);
regs->pc = pc;
regs->ps = 8;
wrusp(sp);
}
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
}
void flush_thread(void)
{
/* Arrange for each exec'ed process to start off with a
clean slate with respect to the FPU. */
current->tss.flags &= ~IEEE_SW_MASK;
wrfpcr(FPCR_DYN_NORMAL);
}
void release_thread(struct task_struct *dead_task)
{
}
/*
* "alpha_clone()".. By the time we get here, the
* non-volatile registers have also been saved on the
* stack. We do some ugly pointer stuff here.. (see
* also copy_thread)
*
* Notice that "fork()" is implemented in terms of clone,
* with parameters (SIGCHLD, 0).
*/
int alpha_clone(unsigned long clone_flags, unsigned long usp,
struct switch_stack * swstack)
{
if (!usp)
usp = rdusp();
return do_fork(clone_flags, usp, (struct pt_regs *) (swstack+1));
}
int alpha_vfork(struct switch_stack * swstack)
{
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
(struct pt_regs *) (swstack+1));
}
extern void ret_from_sys_call(void);
extern void ret_from_smpfork(void);
/*
* Copy an alpha thread..
*
* Note the "stack_offset" stuff: when returning to kernel mode, we need
* to have some extra stack-space for the kernel stack that still exists
* after the "ret_from_sys_call". When returning to user mode, we only
* want the space needed by the syscall stack frame (ie "struct pt_regs").
* Use the passed "regs" pointer to determine how much space we need
* for a kernel fork().
*/
int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
struct task_struct * p, struct pt_regs * regs)
{
struct pt_regs * childregs;
struct switch_stack * childstack, *stack;
unsigned long stack_offset;
stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
if (!(regs->ps & 8))
stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
childregs = (struct pt_regs *) (stack_offset + PAGE_SIZE + (unsigned long)p);
*childregs = *regs;
childregs->r0 = 0;
childregs->r19 = 0;
childregs->r20 = 1; /* OSF/1 has some strange fork() semantics.. */
regs->r20 = 0;
stack = ((struct switch_stack *) regs) - 1;
childstack = ((struct switch_stack *) childregs) - 1;
*childstack = *stack;
#ifdef __SMP__
childstack->r26 = (unsigned long) ret_from_smpfork;
#else
childstack->r26 = (unsigned long) ret_from_sys_call;
#endif
p->tss.usp = usp;
p->tss.ksp = (unsigned long) childstack;
p->tss.pal_flags = 1; /* set FEN, clear everything else */
p->tss.flags = current->tss.flags;
p->mm->context = 0;
return 0;
}
/*
* fill in the user structure for a core dump..
*/
void dump_thread(struct pt_regs * pt, struct user * dump)
{
/* switch stack follows right below pt_regs: */
struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
dump->magic = CMAGIC;
dump->start_code = current->mm->start_code;
dump->start_data = current->mm->start_data;
dump->start_stack = rdusp() & ~(PAGE_SIZE - 1);
dump->u_tsize = (current->mm->end_code - dump->start_code) >> PAGE_SHIFT;
dump->u_dsize = (current->mm->brk + (PAGE_SIZE - 1) - dump->start_data) >> PAGE_SHIFT;
dump->u_ssize =
(current->mm->start_stack - dump->start_stack + PAGE_SIZE - 1) >> PAGE_SHIFT;
/*
* We store the registers in an order/format that is
* compatible with DEC Unix/OSF/1 as this makes life easier
* for gdb.
*/
dump->regs[EF_V0] = pt->r0;
dump->regs[EF_T0] = pt->r1;
dump->regs[EF_T1] = pt->r2;
dump->regs[EF_T2] = pt->r3;
dump->regs[EF_T3] = pt->r4;
dump->regs[EF_T4] = pt->r5;
dump->regs[EF_T5] = pt->r6;
dump->regs[EF_T6] = pt->r7;
dump->regs[EF_T7] = pt->r8;
dump->regs[EF_S0] = sw->r9;
dump->regs[EF_S1] = sw->r10;
dump->regs[EF_S2] = sw->r11;
dump->regs[EF_S3] = sw->r12;
dump->regs[EF_S4] = sw->r13;
dump->regs[EF_S5] = sw->r14;
dump->regs[EF_S6] = sw->r15;
dump->regs[EF_A3] = pt->r19;
dump->regs[EF_A4] = pt->r20;
dump->regs[EF_A5] = pt->r21;
dump->regs[EF_T8] = pt->r22;
dump->regs[EF_T9] = pt->r23;
dump->regs[EF_T10] = pt->r24;
dump->regs[EF_T11] = pt->r25;
dump->regs[EF_RA] = pt->r26;
dump->regs[EF_T12] = pt->r27;
dump->regs[EF_AT] = pt->r28;
dump->regs[EF_SP] = rdusp();
dump->regs[EF_PS] = pt->ps;
dump->regs[EF_PC] = pt->pc;
dump->regs[EF_GP] = pt->gp;
dump->regs[EF_A0] = pt->r16;
dump->regs[EF_A1] = pt->r17;
dump->regs[EF_A2] = pt->r18;
memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8);
}
int dump_fpu (struct pt_regs * regs, elf_fpregset_t *r)
{
/* switch stack follows right below pt_regs: */
struct switch_stack * sw = ((struct switch_stack *) regs) - 1;
memcpy(r, sw->fp, 32 * 8);
return 1;
}
/*
* sys_execve() executes a new program.
*
* This works due to the alpha calling sequence: the first 6 args
* are gotten from registers, while the rest is on the stack, so
* we get a0-a5 for free, and then magically find "struct pt_regs"
* on the stack for us..
*
* Don't do this at home.
*/
asmlinkage int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
unsigned long a3, unsigned long a4, unsigned long a5,
struct pt_regs regs)
{
int error;
char * filename;
lock_kernel();
filename = getname((char *) a0);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename, (char **) a1, (char **) a2, ®s);
putname(filename);
out:
unlock_kernel();
return error;
}
|