summaryrefslogtreecommitdiffstats
path: root/arch/alpha/kernel/smp.c
blob: 25615e43de0c21cfcfa4eac9b3666a8fba7b999b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
/*
 *	linux/arch/alpha/kernel/smp.c
 */

#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/tasks.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>

#include <asm/hwrpb.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>

#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/pgtable.h>
#include <asm/spinlock.h>
#include <asm/hardirq.h>
#include <asm/softirq.h>

#define __KERNEL_SYSCALLS__
#include <asm/unistd.h>

#include "proto.h"

#define DEBUG_SMP 0
#if DEBUG_SMP
#define DBGS(args)	printk args
#else
#define DBGS(args)
#endif

struct ipi_msg_flush_tb_struct ipi_msg_flush_tb __cacheline_aligned;

struct cpuinfo_alpha cpu_data[NR_CPUS];

spinlock_t ticker_lock = SPIN_LOCK_UNLOCKED;
spinlock_t kernel_flag = SPIN_LOCK_UNLOCKED;

unsigned int boot_cpu_id = 0;
static int smp_activated = 0;

int smp_found_config = 0; /* Have we found an SMP box */
static int max_cpus = -1;

unsigned int cpu_present_map = 0;

int smp_num_cpus = 1;
int smp_num_probed = 0; /* Internal processor count */

int smp_threads_ready = 0;
volatile unsigned long cpu_callin_map[NR_CPUS] = {0,};
volatile unsigned long smp_spinning[NR_CPUS] = { 0, };

cycles_t cacheflush_time;

unsigned int prof_multiplier[NR_CPUS];
unsigned int prof_counter[NR_CPUS];

volatile int ipi_bits[NR_CPUS] __cacheline_aligned;

unsigned long boot_cpu_palrev;

volatile int smp_commenced = 0;
volatile int smp_processors_ready = 0;

volatile int cpu_number_map[NR_CPUS];
volatile int cpu_logical_map[NR_CPUS];

extern void calibrate_delay(void);
extern struct thread_struct * original_pcb_ptr;

static void smp_setup_percpu_timer(void);
static void secondary_cpu_start(int, struct task_struct *);
static void send_cpu_msg(char *, int);

/* Process bootcommand SMP options, like "nosmp" and "maxcpus=" */
void __init
smp_setup(char *str, int *ints)
{
	if (ints && ints[0] > 0)
		max_cpus = ints[1];
	else
		max_cpus = 0;
}

static void __init
smp_store_cpu_info(int id)
{
	/* This is it on Alpha, so far. */
	cpu_data[id].loops_per_sec = loops_per_sec;
}

void __init
smp_commence(void)
{
	/* Lets the callin's below out of their loop. */
	mb();
	smp_commenced = 1;
}

void __init
smp_callin(void)
{
	int cpuid = hard_smp_processor_id();

	DBGS(("CALLIN %d state 0x%lx\n", cpuid, current->state));
#ifdef HUH
	local_flush_cache_all();
	local_flush_tlb_all();
#endif
#if 0
	set_irq_udt(mid_xlate[boot_cpu_id]);
#endif

	/* Get our local ticker going. */
	smp_setup_percpu_timer();

#if 0
	calibrate_delay();
#endif
	smp_store_cpu_info(cpuid);
#ifdef HUH
	local_flush_cache_all();
	local_flush_tlb_all();
#endif

	/* Allow master to continue. */
	set_bit(cpuid, (unsigned long *)&cpu_callin_map[cpuid]);
#ifdef HUH
	local_flush_cache_all();
	local_flush_tlb_all();
#endif

#ifdef NOT_YET
	while(!task[cpuid] || current_set[cpuid] != task[cpuid])
	        barrier();
#endif

#ifdef HUH
	local_flush_cache_all();
	local_flush_tlb_all();
#endif
#if 0
	__sti();
#endif
}

asmlinkage int __init
start_secondary(void *unused)
{
	extern asmlinkage void entInt(void);
	extern void paging_init_secondary(void);

	wrmces(7);
	paging_init_secondary();
	trap_init();
	wrent(entInt, 0);

	smp_callin();
	while (!smp_commenced)
		barrier();
#if 1
	printk("start_secondary: commencing CPU %d current %p\n",
	       hard_smp_processor_id(), current);
#endif
	cpu_idle(NULL);
}

static void __init
smp_tune_scheduling (void)
{
	/*
	 * Rough estimation for SMP scheduling, this is the number of
	 * cycles it takes for a fully memory-limited process to flush
	 * the SMP-local cache.
	 *
	 * We are not told how much cache there is, so we have to guess.
	 */

	struct percpu_struct *cpu;
	unsigned long on_chip_cache;
	unsigned long freq;

	cpu = (struct percpu_struct*)((char*)hwrpb + hwrpb->processor_offset);
	switch (cpu->type)
	{
	case EV45_CPU:
		on_chip_cache = 16 + 16;
		break;

	case EV5_CPU:
	case EV56_CPU:
		on_chip_cache = 8 + 8 + 96;
		break;

	case PCA56_CPU:
		on_chip_cache = 16 + 8;
		break;

	case EV6_CPU:
		on_chip_cache = 64 + 64;
		break;

	default:
		on_chip_cache = 8 + 8;
		break;
	}

	freq = hwrpb->cycle_freq ? : est_cycle_freq;

	/* Magic estimation stolen from x86 port.  */
	cacheflush_time = freq / 1024 * on_chip_cache / 5000;
}


/*
 *      Cycle through the processors sending START msgs to boot each.
 */
void __init
smp_boot_cpus(void)
{
	int cpucount = 0;
	int i, first, prev;

	printk("Entering SMP Mode.\n");

#if 0
	__sti();
#endif

	for(i=0; i < NR_CPUS; i++) {
		cpu_number_map[i] = -1;
		cpu_logical_map[i] = -1;
	        prof_counter[i] = 1;
	        prof_multiplier[i] = 1;
		ipi_bits[i] = 0;
	}

	cpu_number_map[boot_cpu_id] = 0;
	cpu_logical_map[0] = boot_cpu_id;
	current->processor = boot_cpu_id; /* ??? */

	smp_store_cpu_info(boot_cpu_id);
	smp_tune_scheduling();
#ifdef NOT_YET
	printk("CPU%d: ", boot_cpu_id);
	print_cpu_info(&cpu_data[boot_cpu_id]);
	set_irq_udt(mid_xlate[boot_cpu_id]);
#endif
	smp_setup_percpu_timer();
#ifdef HUH
	local_flush_cache_all();
#endif
	if (smp_num_probed == 1)
		return;  /* Not an MP box. */

#if NOT_YET
	/*
	 * If SMP should be disabled, then really disable it!
	 */
	if (!max_cpus)
	{
		smp_found_config = 0;
	        printk(KERN_INFO "SMP mode deactivated.\n");
	}
#endif

	for (i = 0; i < NR_CPUS; i++) {

		if (i == boot_cpu_id)
			continue;

	        if (cpu_present_map & (1 << i)) {
	                struct task_struct *idle;
	                int timeout;

	                /* Cook up an idler for this guy. */
	                kernel_thread(start_secondary, NULL, CLONE_PID);
	                idle = task[++cpucount];
			if (!idle)
				panic("No idle process for CPU %d", i);
	                idle->processor = i;

			DBGS(("smp_boot_cpus: CPU %d state 0x%lx flags 0x%lx\n",
			      i, idle->state, idle->flags));

	                /* whirrr, whirrr, whirrrrrrrrr... */
#ifdef HUH
	                local_flush_cache_all();
#endif
	                secondary_cpu_start(i, idle);

	                /* wheee... it's going... wait for 5 secs...*/
	                for (timeout = 0; timeout < 50000; timeout++) {
				if (cpu_callin_map[i])
					break;
	                        udelay(100);
	                }
	                if (cpu_callin_map[i]) {
				/* Another "Red Snapper". */
				cpu_number_map[i] = cpucount;
	                        cpu_logical_map[cpucount] = i;
	                } else {
				cpucount--;
	                        printk("smp_boot_cpus: Processor %d"
				       " is stuck 0x%lx.\n", i, idle->flags);
	                }
	        }
	        if (!(cpu_callin_map[i])) {
			cpu_present_map &= ~(1 << i);
	                cpu_number_map[i] = -1;
	        }
	}
#ifdef HUH
	local_flush_cache_all();
#endif
	if (cpucount == 0) {
		printk("smp_boot_cpus: ERROR - only one Processor found.\n");
	        cpu_present_map = (1 << smp_processor_id());
	} else {
		unsigned long bogosum = 0;
	        for (i = 0; i < NR_CPUS; i++) {
			if (cpu_present_map & (1 << i))
				bogosum += cpu_data[i].loops_per_sec;
	        }
	        printk("smp_boot_cpus: Total of %d Processors activated"
		       " (%lu.%02lu BogoMIPS).\n",
	               cpucount + 1,
	               (bogosum + 2500)/500000,
	               ((bogosum + 2500)/5000)%100);
	        smp_activated = 1;
	        smp_num_cpus = cpucount + 1;
	}

	/* Setup CPU list for IRQ distribution scheme. */
	first = prev = -1;
	for (i = 0; i < NR_CPUS; i++) {
		if (cpu_present_map & (1 << i)) {
			if (first == -1)
				first = i;
			if (prev != -1)
				cpu_data[i].next = i;
	                prev = i;
	        }
	}
	cpu_data[prev].next = first;

	/* Ok, they are spinning and ready to go. */
	smp_processors_ready = 1;
}

static void __init
smp_setup_percpu_timer(void)
{
	int cpu = smp_processor_id();

	prof_counter[cpu] = prof_multiplier[cpu] = 1;
#ifdef NOT_YET
	load_profile_irq(mid_xlate[cpu], lvl14_resolution);
	if (cpu == boot_cpu_id)
		enable_pil_irq(14);
#endif
}

extern void update_one_process(struct task_struct *p, unsigned long ticks,
	                       unsigned long user, unsigned long system,
			       int cpu);

void
smp_percpu_timer_interrupt(struct pt_regs *regs)
{
	int cpu = smp_processor_id();

#ifdef NOT_YET
	clear_profile_irq(mid_xlate[cpu]);
	if(!user_mode(regs))
		alpha_do_profile(regs->pc);
#endif

	if (!--prof_counter[cpu]) {
		int user = user_mode(regs);
	        if (current->pid) {
			update_one_process(current, 1, user, !user, cpu);

	                if (--current->counter < 0) {
				current->counter = 0;
	                        current->need_resched = 1;
	                }

	                spin_lock(&ticker_lock);
	                if (user) {
				if (current->priority < DEF_PRIORITY) {
					kstat.cpu_nice++;
					kstat.per_cpu_nice[cpu]++;
				} else {
					kstat.cpu_user++;
					kstat.per_cpu_user[cpu]++;
				}
	                } else {
				kstat.cpu_system++;
				kstat.per_cpu_system[cpu]++;
	                }
	                spin_unlock(&ticker_lock);
	        }
	        prof_counter[cpu] = prof_multiplier[cpu];
	}
}

int __init
setup_profiling_timer(unsigned int multiplier)
{
#ifdef NOT_YET
	int i;
	unsigned long flags;

	/* Prevent level14 ticker IRQ flooding. */
	if((!multiplier) || (lvl14_resolution / multiplier) < 500)
	        return -EINVAL;

	save_and_cli(flags);
	for(i = 0; i < NR_CPUS; i++) {
	        if(cpu_present_map & (1 << i)) {
	                load_profile_irq(mid_xlate[i], lvl14_resolution / multip
lier);
	                prof_multiplier[i] = multiplier;
	        }
	}
	restore_flags(flags);

	return 0;

#endif
  return -EINVAL;
}

/* Only broken Intel needs this, thus it should not even be
   referenced globally.  */

void __init
initialize_secondary(void)
{
}

static void __init
secondary_cpu_start(int cpuid, struct task_struct *idle)
{
	struct percpu_struct *cpu;
	int timeout;
	  
	cpu = (struct percpu_struct *)
		((char*)hwrpb
		 + hwrpb->processor_offset
		 + cpuid * hwrpb->processor_size);

	/* Set context to idle thread this CPU will use when running
	   assumption is that the idle thread is all set to go... ??? */
	memcpy(&cpu->hwpcb[0], &idle->tss, sizeof(struct pcb_struct));
	cpu->hwpcb[4] = cpu->hwpcb[0]; /* UNIQUE set to KSP ??? */

	DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx\n",
	      cpu->hwpcb[0], cpu->hwpcb[2], hwrpb->vptb));
	DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n",
	      cpuid, idle->state, idle->tss.pal_flags));

	/* Setup HWRPB fields that SRM uses to activate secondary CPU */
	hwrpb->CPU_restart = __start_cpu;
	hwrpb->CPU_restart_data = (unsigned long) idle;

	/* Recalculate and update the HWRPB checksum */
	hwrpb_update_checksum(hwrpb);

	/*
	 * Send a "start" command to the specified processor.
	 */

	/* SRM III 3.4.1.3 */
	cpu->flags |= 0x22;	/* turn on Context Valid and Restart Capable */
	cpu->flags &= ~1;	/* turn off Bootstrap In Progress */
	mb();

	send_cpu_msg("START\r\n", cpuid);

	/* now, we wait... */
	for (timeout = 10000; !(cpu->flags & 1); timeout--) {
		if (timeout <= 0) {
			printk("Processor %d failed to start\n", cpuid);
	                        /* needed for pset_info to work */
#if 0
			ipc_processor_enable(cpu_to_processor(cpunum));
#endif
			return;
		}
		mdelay(1);
	}
	DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid));
}

static void
send_cpu_msg(char *str, int cpuid)
{
	struct percpu_struct *cpu;
	register char *cp1, *cp2;
	unsigned long cpumask;
	size_t len;
	int timeout;

	cpu = (struct percpu_struct *)
		((char*)hwrpb
		 + hwrpb->processor_offset
		 + cpuid * hwrpb->processor_size);

	cpumask = (1L << cpuid);
	if (hwrpb->txrdy & cpumask)
		goto delay1;
	ready1:

	cp2 = str;
	len = strlen(cp2);
	*(unsigned int *)&cpu->ipc_buffer[0] = len;
	cp1 = (char *) &cpu->ipc_buffer[1];
	memcpy(cp1, cp2, len);

	/* atomic test and set */
	set_bit(cpuid, &hwrpb->rxrdy);

	if (hwrpb->txrdy & cpumask)
		goto delay2;
	ready2:
	return;

delay1:
	for (timeout = 10000; timeout > 0; --timeout) {
		if (!(hwrpb->txrdy & cpumask))
			goto ready1;
		udelay(100);
	}
	goto timeout;

delay2:
	for (timeout = 10000; timeout > 0; --timeout) {
		if (!(hwrpb->txrdy & cpumask))
			goto ready2;
		udelay(100);
	}
	goto timeout;

timeout:
	printk("Processor %x not ready\n", cpuid);
	return;
}

/*
 * setup_smp()
 *
 * called from arch/alpha/kernel/setup.c:setup_arch() when __SMP__ defined
 */
void __init
setup_smp(void)
{
	struct percpu_struct *cpubase, *cpu;
	int i;
	  
	boot_cpu_id = hard_smp_processor_id();
	if (boot_cpu_id != 0) {
		printk("setup_smp: boot_cpu_id != 0 (%d).\n", boot_cpu_id);
	}

	if (hwrpb->nr_processors > 1) {

		DBGS(("setup_smp: nr_processors %ld\n",
		      hwrpb->nr_processors));

		cpubase = (struct percpu_struct *)
			((char*)hwrpb + hwrpb->processor_offset);
		boot_cpu_palrev = cpubase->pal_revision;

		for (i = 0; i < hwrpb->nr_processors; i++ ) {
			cpu = (struct percpu_struct *)
				((char *)cpubase + i*hwrpb->processor_size);
			if ((cpu->flags & 0x1cc) == 0x1cc) {
				smp_num_probed++;
				/* assume here that "whami" == index */
				cpu_present_map |= (1 << i);
				if (i != boot_cpu_id)
				  cpu->pal_revision = boot_cpu_palrev;
			}

			DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n",
			      i, cpu->flags, cpu->type));
			DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n",
			      i, cpu->pal_revision));
		}
	} else {
		smp_num_probed = 1;
		cpu_present_map = (1 << boot_cpu_id);
	}
	printk("setup_smp: %d CPUs probed, cpu_present_map 0x%x,"
	       " boot_cpu_id %d\n",
	       smp_num_probed, cpu_present_map, boot_cpu_id);
}

static void
secondary_console_message(void)
{
	int mycpu, i, cnt;
	unsigned long txrdy = hwrpb->txrdy;
	char *cp1, *cp2, buf[80];
	struct percpu_struct *cpu;

	DBGS(("secondary_console_message: TXRDY 0x%lx.\n", txrdy));

	mycpu = hard_smp_processor_id();

	for (i = 0; i < NR_CPUS; i++) {
		if (!(txrdy & (1L << i)))
			continue;

		DBGS(("secondary_console_message: "
		      "TXRDY contains CPU %d.\n", i));

		cpu = (struct percpu_struct *)
		  ((char*)hwrpb
		   + hwrpb->processor_offset
		   + i * hwrpb->processor_size);

 		printk("secondary_console_message: on %d from %d"
		       " HALT_REASON 0x%lx FLAGS 0x%lx\n",
		       mycpu, i, cpu->halt_reason, cpu->flags);

		cnt = cpu->ipc_buffer[0] >> 32;
		if (cnt <= 0 || cnt >= 80)
			strcpy(buf, "<<< BOGUS MSG >>>");
		else {
			cp1 = (char *) &cpu->ipc_buffer[11];
			cp2 = buf;
			strcpy(cp2, cp1);
			
			while ((cp2 = strchr(cp2, '\r')) != 0) {
				*cp2 = ' ';
				if (cp2[1] == '\n')
					cp2[1] = ' ';
			}
		}

		printk("secondary_console_message: on %d message is '%s'\n",
		       mycpu, buf);
	}

	hwrpb->txrdy = 0;
}

enum ipi_message_type {
	IPI_TLB_ALL,
	IPI_TLB_MM,
	IPI_TLB_PAGE,
	IPI_RESCHEDULE,
	IPI_CPU_STOP
};

void
handle_ipi(struct pt_regs *regs)
{
	int this_cpu = smp_processor_id();
	volatile int * pending_ipis = &ipi_bits[this_cpu];
	unsigned long ops;

	DBGS(("handle_ipi: on CPU %d ops 0x%x PC 0x%lx\n",
	      this_cpu, *pending_ipis, regs->pc));

	mb();	/* Order interrupt and bit testing. */
	while ((ops = xchg(pending_ipis, 0)) != 0) {
	  mb();	/* Order bit clearing and data access. */
	  do {
		unsigned long which;

		which = ops & -ops;
		ops &= ~which;
		which = ffz(~which);

		if (which < IPI_RESCHEDULE) {
			if (which == IPI_TLB_ALL)
				tbia();
			else if (which == IPI_TLB_MM) {
				struct mm_struct * mm;
				mm = ipi_msg_flush_tb.p.flush_mm;
				if (mm == current->mm)
					flush_tlb_current(mm);
			}
			else /* IPI_TLB_PAGE */ {
				struct vm_area_struct * vma;
				struct mm_struct * mm;
				unsigned long addr;

				vma = ipi_msg_flush_tb.p.flush_vma;
				mm = vma->vm_mm;
				addr = ipi_msg_flush_tb.flush_addr;

				if (mm == current->mm)
					flush_tlb_current_page(mm, vma, addr);
			}
			clear_bit(this_cpu, &ipi_msg_flush_tb.flush_tb_mask);
		}
		else if (which == IPI_RESCHEDULE) {
			/* Reschedule callback.  Everything to be done
			   is done by the interrupt return path.  */
		}
		else if (which == IPI_CPU_STOP) {
			halt();
		}
		else {
			printk(KERN_CRIT "unknown_ipi() on CPU %d: %lu\n",
			       this_cpu, which);
		}
	  } while (ops);
	  mb();	/* Order data access and bit testing. */
	}

	cpu_data[this_cpu].ipi_count++;

	if (hwrpb->txrdy)
		secondary_console_message();
}

static void
send_ipi_message(unsigned long to_whom, enum ipi_message_type operation)
{
	long i, j;

	/* Reduce the number of memory barriers by doing two loops,
	   one to set the bits, one to invoke the interrupts.  */

	mb();	/* Order out-of-band data and bit setting. */

	for (i = 0, j = 1; i < NR_CPUS; ++i, j <<= 1) {
		if (to_whom & j)
			set_bit(operation, &ipi_bits[i]);
	}

	mb();	/* Order bit setting and interrupt. */

	for (i = 0, j = 1; i < NR_CPUS; ++i, j <<= 1) {
		if (to_whom & j)
			wripir(i);
	}
}

int
smp_info(char *buffer)
{
	long i;
	unsigned long sum = 0;
	for (i = 0; i < NR_CPUS; i++)
		sum += cpu_data[i].ipi_count;

	return sprintf(buffer, "CPUs probed %d active %d map 0x%x IPIs %ld\n",
		       smp_num_probed, smp_num_cpus, cpu_present_map, sum);
}

void
smp_send_reschedule(int cpu)
{
	send_ipi_message(1 << cpu, IPI_RESCHEDULE);
}

void
smp_send_stop(void)
{
	unsigned long to_whom = cpu_present_map ^ (1 << smp_processor_id());
	send_ipi_message(to_whom, IPI_CPU_STOP);
}

void
flush_tlb_all(void)
{
	unsigned long to_whom = cpu_present_map ^ (1 << smp_processor_id());
	long timeout = 1000000;

	spin_lock_own(&kernel_flag, "flush_tlb_all");

	ipi_msg_flush_tb.flush_tb_mask = to_whom;
	send_ipi_message(to_whom, IPI_TLB_ALL);
	tbia();

	while (ipi_msg_flush_tb.flush_tb_mask && --timeout) {
		udelay(1);
		barrier();
	}

	if (timeout == 0) {
		printk("flush_tlb_all: STUCK on CPU %d mask 0x%x\n",
		       smp_processor_id(),
		       ipi_msg_flush_tb.flush_tb_mask);
		ipi_msg_flush_tb.flush_tb_mask = 0;
	}
}

void
flush_tlb_mm(struct mm_struct *mm)
{
	unsigned long to_whom = cpu_present_map ^ (1 << smp_processor_id());
	long timeout = 1000000;

	spin_lock_own(&kernel_flag, "flush_tlb_mm");

	ipi_msg_flush_tb.flush_tb_mask = to_whom;
	ipi_msg_flush_tb.p.flush_mm = mm;
	send_ipi_message(to_whom, IPI_TLB_MM);

	if (mm != current->mm)
		flush_tlb_other(mm);
	else
		flush_tlb_current(mm);

	while (ipi_msg_flush_tb.flush_tb_mask && --timeout) {
		udelay(1);
		barrier();
	}

	if (timeout == 0) {
		printk("flush_tlb_mm: STUCK on CPU %d mask 0x%x\n",
		       smp_processor_id(),
		       ipi_msg_flush_tb.flush_tb_mask);
		ipi_msg_flush_tb.flush_tb_mask = 0;
	}
}

void
flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
{
	int cpu = smp_processor_id();
	unsigned long to_whom = cpu_present_map ^ (1 << cpu);
	struct mm_struct * mm = vma->vm_mm;
	int timeout = 1000000;

	spin_lock_own(&kernel_flag, "flush_tlb_page");

	ipi_msg_flush_tb.flush_tb_mask = to_whom;
	ipi_msg_flush_tb.p.flush_vma = vma;
	ipi_msg_flush_tb.flush_addr = addr;
	send_ipi_message(to_whom, IPI_TLB_PAGE);

	if (mm != current->mm)
		flush_tlb_other(mm);
	else
		flush_tlb_current_page(mm, vma, addr);

	while (ipi_msg_flush_tb.flush_tb_mask && --timeout) {
		udelay(1);
		barrier();
	}

	if (timeout == 0) {
		printk("flush_tlb_page: STUCK on CPU %d mask 0x%x\n",
		       smp_processor_id(),
		       ipi_msg_flush_tb.flush_tb_mask);
		ipi_msg_flush_tb.flush_tb_mask = 0;
	}
}

void
flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end)
{
	/* On the Alpha we always flush the whole user tlb.  */
	flush_tlb_mm(mm);
}

#if DEBUG_SPINLOCK

#ifdef MANAGE_SPINLOCK_IPL

static inline long 
spinlock_raise_ipl(spinlock_t * lock)
{
 	long min_ipl = lock->target_ipl;
	long last_ipl = swpipl(7);
	if (last_ipl < 7 && min_ipl < 7)
		setipl(min_ipl < last_ipl ? last_ipl : min_ipl);
	return last_ipl;
}

static inline void
spinlock_restore_ipl(long prev)
{
	setipl(prev);
}

#else

#define spinlock_raise_ipl(LOCK)	((void)(LOCK), 0)
#define spinlock_restore_ipl(PREV)	((void)(PREV))

#endif /* MANAGE_SPINLOCK_IPL */

void
spin_unlock(spinlock_t * lock)
{
	long old_ipl = lock->saved_ipl;
	mb();
	lock->lock = 0;
	spinlock_restore_ipl(old_ipl);
}

void
spin_lock(spinlock_t * lock)
{
	long tmp;
	long stuck = 1<<27;
	void *inline_pc = __builtin_return_address(0);
	unsigned long started = jiffies;
	int printed = 0;
	int cpu = smp_processor_id();
	long old_ipl = spinlock_raise_ipl(lock);

 try_again:

	stuck = 0x10000000; /* was 4G, now 256M */

	/* Use sub-sections to put the actual loop at the end
	   of this object file's text section so as to perfect
	   branch prediction.  */
	__asm__ __volatile__(
	"1:	ldl_l	%0,%1\n"
	"	subq	%2,1,%2\n"
	"	blbs	%0,2f\n"
	"	or	%0,1,%0\n"
	"	stl_c	%0,%1\n"
	"	beq	%0,3f\n"
	"4:	mb\n"
	".section .text2,\"ax\"\n"
	"2:	ldl	%0,%1\n"
	"	subq	%2,1,%2\n"
	"3:	blt	%2,4b\n"
	"	blbs	%0,2b\n"
	"	br	1b\n"
	".previous"
	: "=r" (tmp),
	  "=m" (__dummy_lock(lock)),
	  "=r" (stuck)
	: "2" (stuck));

	if (stuck < 0) {
		if (!printed) {
			printk("spinlock stuck at %p(%d) owner %s at %p\n",
			       inline_pc, cpu, lock->task->comm,
			       lock->previous);
			printed = 1;
		}
		stuck = 1<<30;
		goto try_again;
	}

	/* Exiting.  Got the lock.  */
	lock->saved_ipl = old_ipl;
	lock->on_cpu = cpu;
	lock->previous = inline_pc;
	lock->task = current;

	if (printed) {
		printk("spinlock grabbed at %p(%d) %ld ticks\n",
		       inline_pc, cpu, jiffies - started);
	}
}

int
spin_trylock(spinlock_t * lock)
{
	long old_ipl = spinlock_raise_ipl(lock);
	int ret;
	if ((ret = !test_and_set_bit(0, lock))) {
		mb();
		lock->saved_ipl = old_ipl;
		lock->on_cpu = smp_processor_id();
		lock->previous = __builtin_return_address(0);
		lock->task = current;
	} else {
		spinlock_restore_ipl(old_ipl);
	}
	return ret;
}
#endif /* DEBUG_SPINLOCK */

#if DEBUG_RWLOCK
void write_lock(rwlock_t * lock)
{
	long regx, regy;
	int stuck_lock, stuck_reader;
	void *inline_pc = __builtin_return_address(0);

 try_again:

	stuck_lock = 1<<26;
	stuck_reader = 1<<26;

	__asm__ __volatile__(
	"1:	ldl_l	%1,%0\n"
	"	blbs	%1,6f\n"
	"	blt	%1,8f\n"
	"	mov	1,%1\n"
	"	stl_c	%1,%0\n"
	"	beq	%1,6f\n"
	"4:	mb\n"
	".section .text2,\"ax\"\n"
	"6:	blt	%3,4b	# debug\n"
	"	subl	%3,1,%3	# debug\n"
	"	ldl	%1,%0\n"
	"	blbs	%1,6b\n"
	"8:	blt	%4,4b	# debug\n"
	"	subl	%4,1,%4	# debug\n"
	"	ldl	%1,%0\n"
	"	blt	%1,8b\n"
	"	br	1b\n"
	".previous"
	: "=m" (__dummy_lock(lock)), "=&r" (regx), "=&r" (regy)
	, "=&r" (stuck_lock), "=&r" (stuck_reader)
	: "0" (__dummy_lock(lock))
	, "3" (stuck_lock), "4" (stuck_reader)
	);

	if (stuck_lock < 0) {
		printk("write_lock stuck at %p\n", inline_pc);
		goto try_again;
	}
	if (stuck_reader < 0) {
		printk("write_lock stuck on readers at %p\n", inline_pc);
		goto try_again;
	}
}

void read_lock(rwlock_t * lock)
{
	long regx;
	int stuck_lock;
	void *inline_pc = __builtin_return_address(0);

 try_again:

	stuck_lock = 1<<26;

	__asm__ __volatile__(
	"1:	ldl_l	%1,%0;"
	"	blbs	%1,6f;"
	"	subl	%1,2,%1;"
	"	stl_c	%1,%0;"
	"	beq	%1,6f;"
	"4:	mb\n"
	".section .text2,\"ax\"\n"
	"6:	ldl	%1,%0;"
	"	blt	%2,4b	# debug\n"
	"	subl	%2,1,%2	# debug\n"
	"	blbs	%1,6b;"
	"	br	1b\n"
	".previous"
	: "=m" (__dummy_lock(lock)), "=&r" (regx), "=&r" (stuck_lock)
	: "0" (__dummy_lock(lock)), "2" (stuck_lock)
	);

	if (stuck_lock < 0) {
		printk("read_lock stuck at %p\n", inline_pc);
		goto try_again;
	}
}
#endif /* DEBUG_RWLOCK */