1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
|
/*
* linux/arch/alpha/kernel/time.c
*
* Copyright (C) 1991, 1992, 1995, 1999 Linus Torvalds
*
* This file contains the PC-specific time handling details:
* reading the RTC at bootup, etc..
* 1994-07-02 Alan Modra
* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
* 1995-03-26 Markus Kuhn
* fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
* precision CMOS clock update
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
* 1997-01-09 Adrian Sun
* use interval timer if CONFIG_RTC=y
* 1997-10-29 John Bowman (bowman@math.ualberta.ca)
* fixed tick loss calculation in timer_interrupt
* (round system clock to nearest tick instead of truncating)
* fixed algorithm in time_init for getting time from CMOS clock
* 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
* fixed algorithm in do_gettimeofday() for calculating the precise time
* from processor cycle counter (now taking lost_ticks into account)
*/
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/hwrpb.h>
#include <linux/mc146818rtc.h>
#include <linux/timex.h>
#include "proto.h"
#include "irq.h"
extern rwlock_t xtime_lock;
extern volatile unsigned long lost_ticks; /* kernel/sched.c */
static int set_rtc_mmss(unsigned long);
/*
* Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
* by 48 gives us 16 bits for HZ while keeping the accuracy good even
* for large CPU clock rates.
*/
#define FIX_SHIFT 48
/* lump static variables together for more efficient access: */
static struct {
/* cycle counter last time it got invoked */
__u32 last_time;
/* ticks/cycle * 2^48 */
unsigned long scaled_ticks_per_cycle;
/* last time the CMOS clock got updated */
time_t last_rtc_update;
/* partial unused tick */
unsigned long partial_tick;
} state;
unsigned long est_cycle_freq;
static inline __u32 rpcc(void)
{
__u32 result;
asm volatile ("rpcc %0" : "=r"(result));
return result;
}
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick
*/
void timer_interrupt(int irq, void *dev, struct pt_regs * regs)
{
unsigned long delta;
__u32 now;
long nticks;
#ifdef __SMP__
/* When SMP, do this for *all* CPUs, but only do the rest for
the boot CPU. */
smp_percpu_timer_interrupt(regs);
if (smp_processor_id() != smp_boot_cpuid)
return;
#endif
write_lock(&xtime_lock);
/*
* Calculate how many ticks have passed since the last update,
* including any previous partial leftover. Save any resulting
* fraction for the next pass.
*/
now = rpcc();
delta = now - state.last_time;
state.last_time = now;
delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
nticks = delta >> FIX_SHIFT;
while (nticks > 0) {
do_timer(regs);
nticks--;
}
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*/
if ((time_status & STA_UNSYNC) == 0
&& xtime.tv_sec > state.last_rtc_update + 660
&& xtime.tv_usec >= 500000 - ((unsigned) tick) / 2
&& xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) {
int tmp = set_rtc_mmss(xtime.tv_sec);
state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
}
write_unlock(&xtime_lock);
}
/*
* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
*
* [For the Julian calendar (which was used in Russia before 1917,
* Britain & colonies before 1752, anywhere else before 1582,
* and is still in use by some communities) leave out the
* -year/100+year/400 terms, and add 10.]
*
* This algorithm was first published by Gauss (I think).
*
* WARNING: this function will overflow on 2106-02-07 06:28:16 on
* machines were long is 32-bit! (However, as time_t is signed, we
* will already get problems at other places on 2038-01-19 03:14:08)
*/
static inline unsigned long mktime(unsigned int year, unsigned int mon,
unsigned int day, unsigned int hour,
unsigned int min, unsigned int sec)
{
if (0 >= (int) (mon -= 2)) { /* 1..12 -> 11,12,1..10 */
mon += 12; /* Puts Feb last since it has leap day */
year -= 1;
}
return (((
(unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) +
year*365 - 719499
)*24 + hour /* now have hours */
)*60 + min /* now have minutes */
)*60 + sec; /* finally seconds */
}
/*
* Initialize Programmable Interval Timers with standard values. Some
* drivers depend on them being initialized (e.g., joystick driver).
*/
#ifdef CONFIG_RTC
void
rtc_init_pit (void)
{
unsigned char control;
/* Turn off RTC interrupts before /dev/rtc is initialized */
control = CMOS_READ(RTC_CONTROL);
control &= ~(RTC_PIE | RTC_AIE | RTC_UIE);
CMOS_WRITE(control, RTC_CONTROL);
(void) CMOS_READ(RTC_INTR_FLAGS);
request_region(0x40, 0x20, "timer"); /* reserve pit */
/* Setup interval timer. */
outb(0x34, 0x43); /* binary, mode 2, LSB/MSB, ch 0 */
outb(LATCH & 0xff, 0x40); /* LSB */
outb(LATCH >> 8, 0x40); /* MSB */
outb(0xb6, 0x43); /* pit counter 2: speaker */
outb(0x31, 0x42);
outb(0x13, 0x42);
}
#endif
void
generic_init_pit (void)
{
unsigned char x;
/* Reset periodic interrupt frequency. */
x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
if (x != 0x26 && x != 0x19 && x != 0x06) {
printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
CMOS_WRITE(0x26, RTC_FREQ_SELECT);
}
/* Turn on periodic interrupts. */
x = CMOS_READ(RTC_CONTROL);
if (!(x & RTC_PIE)) {
printk("Turning on RTC interrupts.\n");
x |= RTC_PIE;
x &= ~(RTC_AIE | RTC_UIE);
CMOS_WRITE(x, RTC_CONTROL);
}
(void) CMOS_READ(RTC_INTR_FLAGS);
request_region(RTC_PORT(0), 0x10, "timer"); /* reserve rtc */
outb(0x36, 0x43); /* pit counter 0: system timer */
outb(0x00, 0x40);
outb(0x00, 0x40);
outb(0xb6, 0x43); /* pit counter 2: speaker */
outb(0x31, 0x42);
outb(0x13, 0x42);
}
void
time_init(void)
{
void (*irq_handler)(int, void *, struct pt_regs *);
unsigned int year, mon, day, hour, min, sec, cc1, cc2;
unsigned long cycle_freq, one_percent;
long diff;
/*
* The Linux interpretation of the CMOS clock register contents:
* When the Update-In-Progress (UIP) flag goes from 1 to 0, the
* RTC registers show the second which has precisely just started.
* Let's hope other operating systems interpret the RTC the same way.
*/
do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
/* Read cycle counter exactly on falling edge of update flag */
cc1 = rpcc();
if (!est_cycle_freq) {
/* Sometimes the hwrpb->cycle_freq value is bogus.
Go another round to check up on it and see. */
do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
cc2 = rpcc();
est_cycle_freq = cc2 - cc1;
cc1 = cc2;
}
/* If the given value is within 1% of what we calculated,
accept it. Otherwise, use what we found. */
cycle_freq = hwrpb->cycle_freq;
one_percent = cycle_freq / 100;
diff = cycle_freq - est_cycle_freq;
if (diff < 0)
diff = -diff;
if (diff > one_percent) {
cycle_freq = est_cycle_freq;
printk("HWRPB cycle frequency bogus. Estimated %lu Hz\n",
cycle_freq);
}
else {
est_cycle_freq = 0;
}
/* From John Bowman <bowman@math.ualberta.ca>: allow the values
to settle, as the Update-In-Progress bit going low isn't good
enough on some hardware. 2ms is our guess; we havn't found
bogomips yet, but this is close on a 500Mhz box. */
__delay(1000000);
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year);
}
#ifdef ALPHA_PRE_V1_2_SRM_CONSOLE
/*
* The meaning of life, the universe, and everything. Plus
* this makes the year come out right on SRM consoles earlier
* than v1.2.
*/
year -= 42;
#endif
if ((year += 1900) < 1970)
year += 100;
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
xtime.tv_usec = 0;
if (HZ > (1<<16)) {
extern void __you_loose (void);
__you_loose();
}
state.last_time = cc1;
state.scaled_ticks_per_cycle
= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
state.last_rtc_update = 0;
state.partial_tick = 0L;
/* setup timer */
irq_handler = timer_interrupt;
if (request_irq(TIMER_IRQ, irq_handler, 0, "timer", NULL))
panic("Could not allocate timer IRQ!");
}
/*
* Use the cycle counter to estimate an displacement from the last time
* tick. Unfortunately the Alpha designers made only the low 32-bits of
* the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
* part. So we can't do the "find absolute time in terms of cycles" thing
* that the other ports do.
*/
void
do_gettimeofday(struct timeval *tv)
{
unsigned long sec, usec, lost, flags;
unsigned long delta_cycles, delta_usec, partial_tick;
read_lock_irqsave(&xtime_lock, flags);
delta_cycles = rpcc() - state.last_time;
sec = xtime.tv_sec;
usec = xtime.tv_usec;
partial_tick = state.partial_tick;
lost = lost_ticks;
read_unlock_irqrestore(&xtime_lock, flags);
#ifdef __SMP__
/* Until and unless we figure out how to get cpu cycle counters
in sync and keep them there, we can't use the rpcc tricks. */
delta_usec = lost * (1000000 / HZ);
#else
/*
* usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
* = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
* = cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
*
* which, given a 600MHz cycle and a 1024Hz tick, has a
* dynamic range of about 1.7e17, which is less than the
* 1.8e19 in an unsigned long, so we are safe from overflow.
*
* Round, but with .5 up always, since .5 to even is harder
* with no clear gain.
*/
delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
+ partial_tick
+ (lost << FIX_SHIFT)) * 15625;
delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
#endif
usec += delta_usec;
if (usec >= 1000000) {
sec += 1;
usec -= 1000000;
}
tv->tv_sec = sec;
tv->tv_usec = usec;
}
void
do_settimeofday(struct timeval *tv)
{
unsigned long delta_usec;
long sec, usec;
write_lock_irq(&xtime_lock);
/* The offset that is added into time in do_gettimeofday above
must be subtracted out here to keep a coherent view of the
time. Without this, a full-tick error is possible. */
#ifdef __SMP__
delta_usec = lost_ticks * (1000000 / HZ);
#else
delta_usec = rpcc() - state.last_time;
delta_usec = (delta_usec * state.scaled_ticks_per_cycle
+ state.partial_tick
+ (lost_ticks << FIX_SHIFT)) * 15625;
delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
#endif
sec = tv->tv_sec;
usec = tv->tv_usec;
usec -= delta_usec;
if (usec < 0) {
usec += 1000000;
sec -= 1;
}
xtime.tv_sec = sec;
xtime.tv_usec = usec;
time_adjust = 0; /* stop active adjtime() */
time_status |= STA_UNSYNC;
time_maxerror = NTP_PHASE_LIMIT;
time_esterror = NTP_PHASE_LIMIT;
write_unlock_irq(&xtime_lock);
}
/*
* In order to set the CMOS clock precisely, set_rtc_mmss has to be
* called 500 ms after the second nowtime has started, because when
* nowtime is written into the registers of the CMOS clock, it will
* jump to the next second precisely 500 ms later. Check the Motorola
* MC146818A or Dallas DS12887 data sheet for details.
*
* BUG: This routine does not handle hour overflow properly; it just
* sets the minutes. Usually you won't notice until after reboot!
*/
static int
set_rtc_mmss(unsigned long nowtime)
{
int retval = 0;
int real_seconds, real_minutes, cmos_minutes;
unsigned char save_control, save_freq_select;
/* Tell the clock it's being set */
save_control = CMOS_READ(RTC_CONTROL);
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
/* Stop and reset prescaler */
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
cmos_minutes = CMOS_READ(RTC_MINUTES);
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
BCD_TO_BIN(cmos_minutes);
/*
* since we're only adjusting minutes and seconds,
* don't interfere with hour overflow. This avoids
* messing with unknown time zones but requires your
* RTC not to be off by more than 15 minutes
*/
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
/* correct for half hour time zone */
real_minutes += 30;
}
real_minutes %= 60;
if (abs(real_minutes - cmos_minutes) < 30) {
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BIN_TO_BCD(real_seconds);
BIN_TO_BCD(real_minutes);
}
CMOS_WRITE(real_seconds,RTC_SECONDS);
CMOS_WRITE(real_minutes,RTC_MINUTES);
} else {
printk(KERN_WARNING
"set_rtc_mmss: can't update from %d to %d\n",
cmos_minutes, real_minutes);
retval = -1;
}
/* The following flags have to be released exactly in this order,
* otherwise the DS12887 (popular MC146818A clone with integrated
* battery and quartz) will not reset the oscillator and will not
* update precisely 500 ms later. You won't find this mentioned in
* the Dallas Semiconductor data sheets, but who believes data
* sheets anyway ... -- Markus Kuhn
*/
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
return retval;
}
|