1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <asm/uaccess.h>
#include "ieee-math.h"
#define OPC_PAL 0x00
#define OPC_INTA 0x10
#define OPC_INTL 0x11
#define OPC_INTS 0x12
#define OPC_INTM 0x13
#define OPC_FLTV 0x15
#define OPC_FLTI 0x16
#define OPC_FLTL 0x17
#define OPC_MISC 0x18
#define OPC_JSR 0x1a
/*
* "Base" function codes for the FLTI-class instructions. These
* instructions all have opcode 0x16. Note that in most cases these
* actually correspond to the "chopped" form of the instruction. Not
* to worry---we extract the qualifier bits separately and deal with
* them separately. Notice that base function code 0x2c is used for
* both CVTTS and CVTST. The other bits in the function code are used
* to distinguish the two.
*/
#define FLTI_FUNC_ADDS 0x000
#define FLTI_FUNC_ADDT 0x020
#define FLTI_FUNC_CMPTEQ 0x025
#define FLTI_FUNC_CMPTLT 0x026
#define FLTI_FUNC_CMPTLE 0x027
#define FLTI_FUNC_CMPTUN 0x024
#define FLTI_FUNC_CVTTS_or_CVTST 0x02c
#define FLTI_FUNC_CVTTQ 0x02f
#define FLTI_FUNC_CVTQS 0x03c
#define FLTI_FUNC_CVTQT 0x03e
#define FLTI_FUNC_DIVS 0x003
#define FLTI_FUNC_DIVT 0x023
#define FLTI_FUNC_MULS 0x002
#define FLTI_FUNC_MULT 0x022
#define FLTI_FUNC_SUBS 0x001
#define FLTI_FUNC_SUBT 0x021
#define FLTI_FUNC_CVTQL 0x030 /* opcode 0x17 */
#define MISC_TRAPB 0x0000
#define MISC_EXCB 0x0400
extern unsigned long alpha_read_fp_reg (unsigned long reg);
extern void alpha_write_fp_reg (unsigned long reg, unsigned long val);
#ifdef MODULE
MODULE_DESCRIPTION("FP Software completion module");
extern long (*alpha_fp_emul_imprecise)(struct pt_regs *, unsigned long);
static long (*save_emul)(struct pt_regs *, unsigned long);
long do_alpha_fp_emul_imprecise(struct pt_regs *, unsigned long);
int init_module(void)
{
save_emul = alpha_fp_emul_imprecise;
alpha_fp_emul_imprecise = do_alpha_fp_emul_imprecise;
return 0;
}
void cleanup_module(void)
{
alpha_fp_emul_imprecise = save_emul;
}
#define alpha_fp_emul_imprecise do_alpha_fp_emul_imprecise
#endif /* MODULE */
/*
* Emulate the floating point instruction at address PC. Returns 0 if
* emulation fails. Notice that the kernel does not and cannot use FP
* regs. This is good because it means that instead of
* saving/restoring all fp regs, we simply stick the result of the
* operation into the appropriate register.
*/
long
alpha_fp_emul (unsigned long pc)
{
unsigned long opcode, fa, fb, fc, func, mode;
unsigned long fpcw = current->tss.flags;
unsigned long va, vb, vc, res, fpcr;
__u32 insn;
get_user(insn, (__u32*)pc);
fc = (insn >> 0) & 0x1f; /* destination register */
func = (insn >> 5) & 0x7ff;
fb = (insn >> 16) & 0x1f;
fa = (insn >> 21) & 0x1f;
opcode = insn >> 26;
va = alpha_read_fp_reg(fa);
vb = alpha_read_fp_reg(fb);
fpcr = rdfpcr();
/*
* Try the operation in software. First, obtain the rounding
* mode...
*/
mode = func & 0xc0;
if (mode == 0xc0) {
/* dynamic---get rounding mode from fpcr: */
mode = ((fpcr & FPCR_DYN_MASK) >> FPCR_DYN_SHIFT) << ROUND_SHIFT;
}
mode |= (fpcw & IEEE_TRAP_ENABLE_MASK);
if ((IEEE_TRAP_ENABLE_MASK & 0xc0)) {
extern int something_is_wrong (void);
something_is_wrong();
}
/* least 6 bits contain operation code: */
switch (func & 0x3f) {
case FLTI_FUNC_CMPTEQ:
res = ieee_CMPTEQ(va, vb, &vc);
break;
case FLTI_FUNC_CMPTLT:
res = ieee_CMPTLT(va, vb, &vc);
break;
case FLTI_FUNC_CMPTLE:
res = ieee_CMPTLE(va, vb, &vc);
break;
case FLTI_FUNC_CMPTUN:
res = ieee_CMPTUN(va, vb, &vc);
break;
case FLTI_FUNC_CVTQL:
/*
* Notice: We can get here only due to an integer
* overflow. Such overflows are reported as invalid
* ops. We return the result the hw would have
* computed.
*/
vc = ((vb & 0xc0000000) << 32 | /* sign and msb */
(vb & 0x3fffffff) << 29); /* rest of the integer */
res = FPCR_INV;
break;
case FLTI_FUNC_CVTQS:
res = ieee_CVTQS(mode, vb, &vc);
break;
case FLTI_FUNC_CVTQT:
res = ieee_CVTQT(mode, vb, &vc);
break;
case FLTI_FUNC_CVTTS_or_CVTST:
if (func == 0x6ac) {
/*
* 0x2ac is also CVTST, but if the /S
* qualifier isn't set, we wouldn't be here in
* the first place...
*/
res = ieee_CVTST(mode, vb, &vc);
} else {
res = ieee_CVTTS(mode, vb, &vc);
}
break;
case FLTI_FUNC_DIVS:
res = ieee_DIVS(mode, va, vb, &vc);
break;
case FLTI_FUNC_DIVT:
res = ieee_DIVT(mode, va, vb, &vc);
break;
case FLTI_FUNC_MULS:
res = ieee_MULS(mode, va, vb, &vc);
break;
case FLTI_FUNC_MULT:
res = ieee_MULT(mode, va, vb, &vc);
break;
case FLTI_FUNC_SUBS:
res = ieee_SUBS(mode, va, vb, &vc);
break;
case FLTI_FUNC_SUBT:
res = ieee_SUBT(mode, va, vb, &vc);
break;
case FLTI_FUNC_ADDS:
res = ieee_ADDS(mode, va, vb, &vc);
break;
case FLTI_FUNC_ADDT:
res = ieee_ADDT(mode, va, vb, &vc);
break;
case FLTI_FUNC_CVTTQ:
res = ieee_CVTTQ(mode, vb, &vc);
break;
default:
printk("alpha_fp_emul: unexpected function code %#lx at %#lx\n",
func & 0x3f, pc);
return 0;
}
/*
* Take the appropriate action for each possible
* floating-point result:
*
* - Set the appropriate bits in the FPCR
* - If the specified exception is enabled in the FPCR,
* return. The caller (entArith) will dispatch
* the appropriate signal to the translated program.
*
* In addition, properly track the exception state in software
* as described in the Alpha Architectre Handbook section 4.7.7.3.
*/
if (res) {
/* Record exceptions in software control word. */
current->tss.flags = fpcw |= res >> 35;
/* Update hardware control register */
fpcr &= (~FPCR_MASK | FPCR_DYN_MASK);
fpcr |= ieee_swcr_to_fpcr(fpcw | (~fpcw&IEEE_STATUS_MASK)>>16);
wrfpcr(fpcr);
/* Do we generate a signal? */
if (res >> 51 & fpcw & IEEE_TRAP_ENABLE_MASK)
return 0;
}
/*
* Whoo-kay... we got this far, and we're not generating a signal
* to the translated program. All that remains is to write the
* result:
*/
alpha_write_fp_reg(fc, vc);
return 1;
}
long
alpha_fp_emul_imprecise (struct pt_regs *regs, unsigned long write_mask)
{
unsigned long trigger_pc = regs->pc - 4;
unsigned long insn, opcode, rc;
MOD_INC_USE_COUNT;
/*
* Turn off the bits corresponding to registers that are the
* target of instructions that set bits in the exception
* summary register. We have some slack doing this because a
* register that is the target of a trapping instruction can
* be written at most once in the trap shadow.
*
* Branches, jumps, TRAPBs, EXCBs and calls to PALcode all
* bound the trap shadow, so we need not look any further than
* up to the first occurrence of such an instruction.
*/
while (write_mask) {
get_user(insn, (__u32*)(trigger_pc));
opcode = insn >> 26;
rc = insn & 0x1f;
switch (opcode) {
case OPC_PAL:
case OPC_JSR:
case 0x30 ... 0x3f: /* branches */
MOD_DEC_USE_COUNT;
return 0;
case OPC_MISC:
switch (insn & 0xffff) {
case MISC_TRAPB:
case MISC_EXCB:
MOD_DEC_USE_COUNT;
return 0;
default:
break;
}
break;
case OPC_INTA:
case OPC_INTL:
case OPC_INTS:
case OPC_INTM:
write_mask &= ~(1UL << rc);
break;
case OPC_FLTV:
case OPC_FLTI:
case OPC_FLTL:
write_mask &= ~(1UL << (rc + 32));
break;
}
if (!write_mask) {
if ((opcode == OPC_FLTI || opcode == OPC_FLTL)
&& alpha_fp_emul(trigger_pc))
{
/* re-execute insns in trap-shadow: */
regs->pc = trigger_pc + 4;
MOD_DEC_USE_COUNT;
return 1;
}
break;
}
trigger_pc -= 4;
}
MOD_DEC_USE_COUNT;
return 0;
}
|