summaryrefslogtreecommitdiffstats
path: root/arch/arm/mm/init.c
blob: 61feb6a553d474c38cf6728339497f49cc2848fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*
 *  linux/arch/arm/mm/init.c
 *
 *  Copyright (C) 1995-2000 Russell King
 */
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/swapctl.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#ifdef CONFIG_BLK_DEV_INITRD
#include <linux/blk.h>
#endif

#include <asm/system.h>
#include <asm/segment.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/hardware.h>
#include <asm/setup.h>

#include "map.h"

#ifdef CONFIG_CPU_32
#define TABLE_OFFSET	(PTRS_PER_PTE)
#else
#define TABLE_OFFSET	0
#endif
#define TABLE_SIZE	((TABLE_OFFSET + PTRS_PER_PTE) * sizeof(void *))

static unsigned long totalram_pages;
pgd_t swapper_pg_dir[PTRS_PER_PGD];
extern int _stext, _text, _etext, _edata, _end;

/*
 * The sole use of this is to pass memory configuration
 * data from paging_init to mem_init.
 */
static struct meminfo __initdata meminfo;

/*
 * empty_bad_page is the page that is used for page faults when
 * linux is out-of-memory. Older versions of linux just did a
 * do_exit(), but using this instead means there is less risk
 * for a process dying in kernel mode, possibly leaving a inode
 * unused etc..
 *
 * empty_bad_pte_table is the accompanying page-table: it is
 * initialized to point to BAD_PAGE entries.
 *
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
struct page *empty_bad_page;
pte_t *empty_bad_pte_table;

pte_t *get_bad_pte_table(void)
{
	pte_t v;
	int i;

	v = pte_mkdirty(mk_pte(empty_bad_page, PAGE_SHARED));

	for (i = 0; i < PTRS_PER_PTE; i++)
		set_pte(empty_bad_pte_table + i, v);

	return empty_bad_pte_table;
}

void __handle_bad_pmd(pmd_t *pmd)
{
	pmd_ERROR(*pmd);
#ifdef CONFIG_DEBUG_ERRORS
	__backtrace();
#endif
	set_pmd(pmd, mk_user_pmd(get_bad_pte_table()));
}

void __handle_bad_pmd_kernel(pmd_t *pmd)
{
	pmd_ERROR(*pmd);
#ifdef CONFIG_DEBUG_ERRORS
	__backtrace();
#endif
	set_pmd(pmd, mk_kernel_pmd(get_bad_pte_table()));
}

#ifndef CONFIG_NO_PGT_CACHE
struct pgtable_cache_struct quicklists;

int do_check_pgt_cache(int low, int high)
{
	int freed = 0;

	if(pgtable_cache_size > high) {
		do {
			if(pgd_quicklist) {
				free_pgd_slow(get_pgd_fast());
				freed++;
			}
			if(pmd_quicklist) {
				free_pmd_slow(get_pmd_fast());
				freed++;
			}
			if(pte_quicklist) {
				free_pte_slow(get_pte_fast());
				 freed++;
			}
		} while(pgtable_cache_size > low);
	}
	return freed;
}
#else
int do_check_pgt_cache(int low, int high)
{
	return 0;
}
#endif

void show_mem(void)
{
	int free = 0, total = 0, reserved = 0;
	int shared = 0, cached = 0, node;

	printk("Mem-info:\n");
	show_free_areas();
	printk("Free swap:       %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));

	for (node = 0; node < numnodes; node++) {
		struct page *page, *end;

		page = NODE_MEM_MAP(node);
		end  = page + NODE_DATA(node)->node_size;

		do {
			if (PageSkip(page)) {
				page = page->next_hash;
				if (page == NULL)
					break;
			}
			total++;
			if (PageReserved(page))
				reserved++;
			else if (PageSwapCache(page))
				cached++;
			else if (!page_count(page))
				free++;
			else
				shared += atomic_read(&page->count) - 1;
			page++;
		} while (page < end);
	}

	printk("%d pages of RAM\n", total);
	printk("%d free pages\n", free);
	printk("%d reserved pages\n", reserved);
	printk("%d pages shared\n", shared);
	printk("%d pages swap cached\n", cached);
#ifndef CONFIG_NO_PGT_CACHE
	printk("%ld page tables cached\n", pgtable_cache_size);
#endif
	show_buffers();
}

#define O_PFN_DOWN(x)	((x) >> PAGE_SHIFT)
#define V_PFN_DOWN(x)	O_PFN_DOWN(__pa(x))

#define O_PFN_UP(x)	(PAGE_ALIGN(x) >> PAGE_SHIFT)
#define V_PFN_UP(x)	O_PFN_UP(__pa(x))

#define PFN_SIZE(x)	((x) >> PAGE_SHIFT)
#define PFN_RANGE(s,e)	PFN_SIZE(PAGE_ALIGN((unsigned long)(e)) - \
				(((unsigned long)(s)) & PAGE_MASK))

static unsigned int __init
find_bootmap_pfn(struct meminfo *mi, unsigned int bootmap_pages)
{
	unsigned int start_pfn, bank, bootmap_pfn;

	start_pfn   = V_PFN_UP(&_end);
	bootmap_pfn = 0;

	/*
	 * FIXME: We really want to avoid allocating the bootmap
	 * over the top of the initrd.
	 */
#ifdef CONFIG_BLK_DEV_INITRD
	if (initrd_start) {
		if (__pa(initrd_end) > mi->end) {
			printk ("initrd extends beyond end of memory "
				"(0x%08lx > 0x%08lx) - disabling initrd\n",
				__pa(initrd_end), mi->end);
			initrd_start = 0;
			initrd_end   = 0;
		}
	}
#endif

	for (bank = 0; bank < mi->nr_banks; bank ++) {
		unsigned int start, end;

		if (mi->bank[bank].size == 0)
			continue;

		start = O_PFN_UP(mi->bank[bank].start);
		end   = O_PFN_DOWN(mi->bank[bank].size +
				   mi->bank[bank].start);

		if (end < start_pfn)
			continue;

		if (start < start_pfn)
			start = start_pfn;

		if (end <= start)
			continue;

		if (end - start >= bootmap_pages) {
			bootmap_pfn = start;
			break;
		}
	}

	if (bootmap_pfn == 0)
		BUG();

	return bootmap_pfn;
}

/*
 * Initialise one node of the bootmem allocator.  For now, we
 * only initialise node 0.  Notice that we have a bootmem
 * bitmap per node.
 */
static void __init setup_bootmem_node(int node, struct meminfo *mi)
{
	unsigned int end_pfn, start_pfn, bootmap_pages, bootmap_pfn;
	unsigned int i;

	if (node != 0)	/* only initialise node 0 for now */
		return;

	start_pfn     = O_PFN_UP(PHYS_OFFSET);
	end_pfn	      = O_PFN_DOWN(mi->end);
	bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
	bootmap_pfn   = find_bootmap_pfn(mi, bootmap_pages);

	/*
	 * Initialise the boot-time allocator
	 */
	init_bootmem_node(node, bootmap_pfn, start_pfn, end_pfn);

	/*
	 * Register all available RAM with the bootmem allocator.
	 */
	for (i = 0; i < mi->nr_banks; i++)
		if (mi->bank[i].size)
			free_bootmem_node(node, mi->bank[i].start,
					  PFN_SIZE(mi->bank[i].size) << PAGE_SHIFT);

	reserve_bootmem_node(node, bootmap_pfn << PAGE_SHIFT,
			     bootmap_pages << PAGE_SHIFT);
}

/*
 * Initialise the bootmem allocator.
 */
void __init bootmem_init(struct meminfo *mi)
{
	unsigned int i, node;

	/*
	 * Calculate the  physical address of the top of memory.
	 * Note that there are no guarantees assumed about the
	 * ordering of the bank information.
	 */
	mi->end = 0;
	for (i = 0; i < mi->nr_banks; i++) {
		unsigned long end;

		if (mi->bank[i].size != 0) {
			end = mi->bank[i].start + mi->bank[i].size;
			if (mi->end < end)
				mi->end = end;
		}
	}

	max_low_pfn = O_PFN_DOWN(mi->end - PHYS_OFFSET);

	/*
	 * Setup each node
	 */
	for (node = 0; node < numnodes; node++)
		setup_bootmem_node(node, mi);

	/*
	 * Register the kernel text and data with bootmem.
	 * Note that this can only be in node 0.
	 */
	reserve_bootmem_node(0, V_PFN_DOWN(&_stext) << PAGE_SHIFT,
			     PFN_RANGE(&_stext, &_end) << PAGE_SHIFT);

#ifdef CONFIG_CPU_32
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
	reserve_bootmem_node(0, V_PFN_DOWN(swapper_pg_dir) << PAGE_SHIFT,
			     PFN_SIZE(PTRS_PER_PGD * sizeof(void *)) << PAGE_SHIFT);
#endif
#ifdef CONFIG_BLK_DEV_INITRD
	/*
	 * This may be in any bank.  Currently, we assume that
	 * it is in bank 0.
	 */
	if (initrd_start)
		reserve_bootmem_node(0, V_PFN_DOWN(initrd_start) << PAGE_SHIFT,
				     PFN_RANGE(initrd_start, initrd_end) << PAGE_SHIFT);
#endif
}

/*
 * paging_init() sets up the page tables...
 */
void __init paging_init(struct meminfo *mi)
{
	void *zero_page, *bad_page, *bad_table;
	int node;

	memcpy(&meminfo, mi, sizeof(meminfo));

	/*
	 * allocate what we need for the bad pages
	 */
	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
	bad_page  = alloc_bootmem_low_pages(PAGE_SIZE);
	bad_table = alloc_bootmem_low_pages(TABLE_SIZE);

	/*
	 * initialise the page tables
	 */
	pagetable_init(mi);
	flush_tlb_all();

	/*
	 * initialise the zones within each node
	 */
	for (node = 0; node < numnodes; node++) {
		unsigned long zone_size[MAX_NR_ZONES];
		unsigned long zhole_size[MAX_NR_ZONES];
		struct bootmem_data *bdata;
		pg_data_t *pgdat;
		int i;

		/*
		 * Initialise the zone size information.
		 */
		for (i = 0; i < MAX_NR_ZONES; i++) {
			zone_size[i]  = 0;
			zhole_size[i] = 0;
		}

		pgdat = NODE_DATA(node);
		bdata = pgdat->bdata;

		/*
		 * The size of this node has already been determined.
		 * If we need to do anything fancy with the allocation
		 * of this memory to the zones, now is the time to do
		 * it.  For now, we don't touch zhole_size.
		 */
		zone_size[0] = bdata->node_low_pfn -
				(bdata->node_boot_start >> PAGE_SHIFT);

		free_area_init_node(node, pgdat, zone_size,
				bdata->node_boot_start, zhole_size);
	}

	/*
	 * finish off the bad pages once
	 * the mem_map is initialised
	 */
	memzero(zero_page, PAGE_SIZE);
	memzero(bad_page, PAGE_SIZE);

	empty_zero_page = mem_map + MAP_NR(zero_page);
	empty_bad_page  = mem_map + MAP_NR(bad_page);
	empty_bad_pte_table = ((pte_t *)bad_table) + TABLE_OFFSET;
}

static inline void free_unused_mem_map(void)
{
	struct page *page, *end;

	end = mem_map + max_mapnr;

	for (page = mem_map; page < end; page++) {
		unsigned long low, high;

		if (!PageSkip(page))
			continue;

		low = PAGE_ALIGN((unsigned long)(page + 1));
		if (page->next_hash < page)
			high = ((unsigned long)end) & PAGE_MASK;
		else
			high = ((unsigned long)page->next_hash) & PAGE_MASK;

		while (low < high) {
			ClearPageReserved(mem_map + MAP_NR(low));
			low += PAGE_SIZE;
		}
	}
}

/*
 * mem_init() marks the free areas in the mem_map and tells us how much
 * memory is free.  This is done after various parts of the system have
 * claimed their memory after the kernel image.
 */
void __init mem_init(void)
{
	extern char __init_begin, __init_end;
	unsigned int codepages, datapages, initpages;
	int i, node;

	codepages = &_etext - &_text;
	datapages = &_end - &_etext;
	initpages = &__init_end - &__init_begin;

	high_memory = (void *)__va(meminfo.end);
	max_mapnr   = MAP_NR(high_memory);

	/*
	 * We may have non-contiguous memory.  Setup the PageSkip stuff,
	 * and mark the areas of mem_map which can be freed
	 */
	if (meminfo.nr_banks != 1)
		create_memmap_holes(&meminfo);

	/* this will put all unused low memory onto the freelists */
	for (node = 0; node < numnodes; node++)
		totalram_pages += free_all_bootmem_node(node);

	/*
	 * Since our memory may not be contiguous, calculate the
	 * real number of pages we have in this system
	 */
	printk(KERN_INFO "Memory:");

	num_physpages = 0;
	for (i = 0; i < meminfo.nr_banks; i++) {
		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
		printk(" %ldMB", meminfo.bank[i].size >> 20);
	}

	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
		"%dK data, %dK init)\n",
		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
		codepages >> 10, datapages >> 10, initpages >> 10);

	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
		extern int sysctl_overcommit_memory;
		/*
		 * On a machine this small we won't get
		 * anywhere without overcommit, so turn
		 * it on by default.
		 */
		sysctl_overcommit_memory = 1;
	}
}

static inline void free_area(unsigned long addr, unsigned long end, char *s)
{
	unsigned int size = (end - addr) >> 10;
	struct page *page = mem_map + MAP_NR(addr);

	for (; addr < end; addr += PAGE_SIZE, page ++) {
		ClearPageReserved(page);
		set_page_count(page, 1);
		free_page(addr);
		totalram_pages++;
	}

	if (size)
		printk(" %dk %s", size, s);
}

void free_initmem(void)
{
	extern char __init_begin, __init_end;

	printk("Freeing unused kernel memory:");

	free_area((unsigned long)(&__init_begin),
		  (unsigned long)(&__init_end),
		  "init");

	printk("\n");
}

#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
	unsigned long addr;
	for (addr = start; addr < end; addr += PAGE_SIZE) {
		ClearPageReserved(mem_map + MAP_NR(addr));
		set_page_count(mem_map+MAP_NR(addr), 1);
		free_page(addr);
		totalram_pages++;
	}
	printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
}
#endif

void si_meminfo(struct sysinfo *val)
{
	val->totalram  = totalram_pages;
	val->sharedram = 0;
	val->freeram   = nr_free_pages();
	val->bufferram = atomic_read(&buffermem_pages);
	val->totalhigh = 0;
	val->freehigh  = 0;
	val->mem_unit  = PAGE_SIZE;
}