1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
/*
* arch/arm/mm/mm-armo.c
*
* Page table sludge for older ARM processor architectures.
*
* Copyright (C) 1998-2000 Russell King
*/
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/arch/memory.h>
#include "map.h"
#define MEMC_TABLE_SIZE (256*sizeof(unsigned long))
#define PGD_TABLE_SIZE (PTRS_PER_PGD * BYTES_PER_PTR)
int page_nr;
extern unsigned long get_page_2k(int prio);
extern void free_page_2k(unsigned long);
extern pte_t *get_bad_pte_table(void);
/*
* Allocate a page table. Note that we place the MEMC
* table before the page directory. This means we can
* easily get to both tightly-associated data structures
* with a single pointer.
*
* We actually only need 1152 bytes, 896 bytes is wasted.
* We could try to fit 7 PTEs into that slot somehow.
*/
static inline void *alloc_pgd_table(int priority)
{
unsigned long pg2k;
pg2k = get_page_2k(priority);
if (pg2k)
pg2k += MEMC_TABLE_SIZE;
return (void *)pg2k;
}
void free_pgd_slow(pgd_t *pgd)
{
unsigned long tbl = (unsigned long)pgd;
tbl -= MEMC_TABLE_SIZE;
free_page_2k(tbl);
}
/*
* FIXME: the following over-allocates by 1600%
*/
static inline void *alloc_pte_table(int size, int prio)
{
if (size != 128)
printk("invalid table size\n");
return (void *)get_page_2k(prio);
}
void free_pte_slow(pte_t *pte)
{
unsigned long tbl = (unsigned long)pte;
free_page_2k(tbl);
}
pgd_t *get_pgd_slow(void)
{
pgd_t *pgd = (pgd_t *)alloc_pgd_table(GFP_KERNEL);
pmd_t *new_pmd;
if (pgd) {
pgd_t *init = pgd_offset(&init_mm, 0);
memzero(pgd, USER_PTRS_PER_PGD * sizeof(pgd_t));
memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
/*
* On ARM, first page must always be allocated
*/
if (!pmd_alloc(pgd, 0))
goto nomem;
else {
pmd_t *old_pmd = pmd_offset(init, 0);
new_pmd = pmd_offset(pgd, 0);
if (!pte_alloc(new_pmd, 0))
goto nomem_pmd;
else {
pte_t *new_pte = pte_offset(new_pmd, 0);
pte_t *old_pte = pte_offset(old_pmd, 0);
set_pte (new_pte, *old_pte);
}
}
/* update MEMC tables */
cpu_memc_update_all(pgd);
}
return pgd;
nomem_pmd:
pmd_free(new_pmd);
nomem:
free_pgd_slow(pgd);
return NULL;
}
pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset)
{
pte_t *pte;
pte = (pte_t *)alloc_pte_table(PTRS_PER_PTE * sizeof(pte_t), GFP_KERNEL);
if (pmd_none(*pmd)) {
if (pte) {
memzero(pte, PTRS_PER_PTE * sizeof(pte_t));
set_pmd(pmd, mk_user_pmd(pte));
return pte + offset;
}
set_pmd(pmd, mk_user_pmd(get_bad_pte_table()));
return NULL;
}
free_pte_slow(pte);
if (pmd_bad(*pmd)) {
__handle_bad_pmd(pmd);
return NULL;
}
return (pte_t *) pmd_page(*pmd) + offset;
}
/*
* No special code is required here.
*/
void setup_mm_for_reboot(char mode)
{
}
/*
* This contains the code to setup the memory map on an ARM2/ARM250/ARM3
* machine. This is both processor & architecture specific, and requires
* some more work to get it to fit into our separate processor and
* architecture structure.
*/
void __init pagetable_init(void)
{
pte_t *pte;
int i;
page_nr = max_low_pfn;
pte = alloc_bootmem_low_pages(PTRS_PER_PTE * sizeof(pte_t));
pte[0] = mk_pte_phys(PAGE_OFFSET + 491520, PAGE_READONLY);
set_pmd(pmd_offset(swapper_pg_dir, 0), mk_kernel_pmd(pte));
for (i = 1; i < PTRS_PER_PGD; i++)
pgd_val(swapper_pg_dir[i]) = 0;
}
/*
* We never have holes in the memmap
*/
void __init create_memmap_holes(void)
{
}
|