summaryrefslogtreecommitdiffstats
path: root/arch/arm/mm/mm-armv.c
blob: ddc69089a8f9001ddf242bd1e583f7172ab5a442 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
 *  linux/arch/arm/mm/mm-armv.c
 *
 *  Page table sludge for ARM v3 and v4 processor architectures.
 *
 *  Copyright (C) 1998-1999 Russell King
 */
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/bootmem.h>

#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/io.h>
#include <asm/setup.h>

#include "map.h"

unsigned long *valid_addr_bitmap;

extern unsigned long get_page_2k(int priority);
extern void free_page_2k(unsigned long page);
extern pte_t *get_bad_pte_table(void);

/*
 * These are useful for identifing cache coherency
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
static int __init nocache_setup(char *__unused)
{
	cr_alignment &= ~4;
	cr_no_alignment &= ~4;
	flush_cache_all();
	set_cr(cr_alignment);
	return 1;
}

static int __init nowrite_setup(char *__unused)
{
	cr_alignment &= ~(8|4);
	cr_no_alignment &= ~(8|4);
	flush_cache_all();
	set_cr(cr_alignment);
	return 1;
}

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~2;
	cr_no_alignment &= ~2;
	set_cr(cr_alignment);
	return 1;
}

__setup("noalign", noalign_setup);
__setup("nocache", nocache_setup);
__setup("nowb", nowrite_setup);

#define FIRST_KERNEL_PGD_NR	(FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)

/*
 * need to get a 16k page for level 1
 */
pgd_t *get_pgd_slow(void)
{
	pgd_t *pgd = (pgd_t *)__get_free_pages(GFP_KERNEL,2);
	pmd_t *new_pmd;

	if (pgd) {
		pgd_t *init = pgd_offset_k(0);
		
		memzero(pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
		memcpy(pgd  + FIRST_KERNEL_PGD_NR, init + FIRST_KERNEL_PGD_NR,
		       (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
		clean_cache_area(pgd, PTRS_PER_PGD * sizeof(pgd_t));

		/*
		 * On ARM, first page must always be allocated
		 */
		if (!pmd_alloc(pgd, 0))
			goto nomem;
		else {
			pmd_t *old_pmd = pmd_offset(init, 0);
			new_pmd = pmd_offset(pgd, 0);

			if (!pte_alloc(new_pmd, 0))
				goto nomem_pmd;
			else {
				pte_t *new_pte = pte_offset(new_pmd, 0);
				pte_t *old_pte = pte_offset(old_pmd, 0);

				set_pte(new_pte, *old_pte);
			}
		}
	}
	return pgd;

nomem_pmd:
	pmd_free(new_pmd);
nomem:
	free_pages((unsigned long)pgd, 2);
	return NULL;
}

void free_pgd_slow(pgd_t *pgd)
{
	if (pgd) { /* can pgd be NULL? */
		pmd_t *pmd;
		pte_t *pte;

		/* pgd is always present and good */
		pmd = (pmd_t *)pgd;
		if (pmd_none(*pmd))
			goto free;
		if (pmd_bad(*pmd)) {
			pmd_ERROR(*pmd);
			pmd_clear(pmd);
			goto free;
		}

		pte = pte_offset(pmd, 0);
		pmd_clear(pmd);
		pte_free(pte);
		pmd_free(pmd);
	}
free:
	free_pages((unsigned long) pgd, 2);
}

pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset)
{
	pte_t *pte;

	pte = (pte_t *)get_page_2k(GFP_KERNEL);
	if (pmd_none(*pmd)) {
		if (pte) {
			memzero(pte, 2 * PTRS_PER_PTE * sizeof(pte_t));
			clean_cache_area(pte, PTRS_PER_PTE * sizeof(pte_t));
			pte += PTRS_PER_PTE;
			set_pmd(pmd, mk_user_pmd(pte));
			return pte + offset;
		}
		set_pmd(pmd, mk_user_pmd(get_bad_pte_table()));
		return NULL;
	}
	free_page_2k((unsigned long)pte);
	if (pmd_bad(*pmd)) {
		__handle_bad_pmd(pmd);
		return NULL;
	}
	return (pte_t *) pmd_page(*pmd) + offset;
}

pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long offset)
{
	pte_t *pte;

	pte = (pte_t *)get_page_2k(GFP_KERNEL);
	if (pmd_none(*pmd)) {
		if (pte) {
			memzero(pte, 2 * PTRS_PER_PTE * sizeof(pte_t));
			clean_cache_area(pte, PTRS_PER_PTE * sizeof(pte_t));
			pte += PTRS_PER_PTE;
			set_pmd(pmd, mk_kernel_pmd(pte));
			return pte + offset;
		}
		set_pmd(pmd, mk_kernel_pmd(get_bad_pte_table()));
		return NULL;
	}
	free_page_2k((unsigned long)pte);
	if (pmd_bad(*pmd)) {
		__handle_bad_pmd_kernel(pmd);
		return NULL;
	}
	return (pte_t *) pmd_page(*pmd) + offset;
}

void free_pte_slow(pte_t *pte)
{
	free_page_2k((unsigned long)(pte - PTRS_PER_PTE));
}

/*
 * Create a SECTION PGD between VIRT and PHYS in domain
 * DOMAIN with protection PROT
 */
static inline void
alloc_init_section(unsigned long virt, unsigned long phys, int prot)
{
	pmd_t pmd;

	pmd_val(pmd) = phys | prot;

	set_pmd(pmd_offset(pgd_offset_k(virt), virt), pmd);
}

/*
 * Add a PAGE mapping between VIRT and PHYS in domain
 * DOMAIN with protection PROT.  Note that due to the
 * way we map the PTEs, we must allocate two PTE_SIZE'd
 * blocks - one for the Linux pte table, and one for
 * the hardware pte table.
 */
static inline void
alloc_init_page(unsigned long virt, unsigned long phys, int domain, int prot)
{
	pmd_t *pmdp;
	pte_t *ptep;

	pmdp = pmd_offset(pgd_offset_k(virt), virt);

	if (pmd_none(*pmdp)) {
		pte_t *ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
						      sizeof(pte_t));

		ptep += PTRS_PER_PTE;

		set_pmd(pmdp, __mk_pmd(ptep, PMD_TYPE_TABLE | PMD_DOMAIN(domain)));
	}
	ptep = pte_offset(pmdp, virt);

	set_pte(ptep, mk_pte_phys(phys, __pgprot(prot)));
}

/*
 * Clear any PGD mapping.  On a two-level page table system,
 * the clearance is done by the middle-level functions (pmd)
 * rather than the top-level (pgd) functions.
 */
static inline void clear_mapping(unsigned long virt)
{
	pmd_clear(pmd_offset(pgd_offset_k(virt), virt));
}

/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections.
 */
static void __init create_mapping(struct map_desc *md)
{
	unsigned long virt, length;
	int prot_sect, prot_pte;
	long off;

	prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
		   (md->prot_read  ? L_PTE_USER       : 0) |
		   (md->prot_write ? L_PTE_WRITE      : 0) |
		   (md->cacheable  ? L_PTE_CACHEABLE  : 0) |
		   (md->bufferable ? L_PTE_BUFFERABLE : 0);

	prot_sect = PMD_TYPE_SECT | PMD_DOMAIN(md->domain) |
		    (md->prot_read  ? PMD_SECT_AP_READ    : 0) |
		    (md->prot_write ? PMD_SECT_AP_WRITE   : 0) |
		    (md->cacheable  ? PMD_SECT_CACHEABLE  : 0) |
		    (md->bufferable ? PMD_SECT_BUFFERABLE : 0);

	virt   = md->virtual;
	off    = md->physical - virt;
	length = md->length;

	while ((virt & 1048575 || (virt + off) & 1048575) && length >= PAGE_SIZE) {
		alloc_init_page(virt, virt + off, md->domain, prot_pte);

		virt   += PAGE_SIZE;
		length -= PAGE_SIZE;
	}

	while (length >= PGDIR_SIZE) {
		alloc_init_section(virt, virt + off, prot_sect);

		virt   += PGDIR_SIZE;
		length -= PGDIR_SIZE;
	}

	while (length >= PAGE_SIZE) {
		alloc_init_page(virt, virt + off, md->domain, prot_pte);

		virt   += PAGE_SIZE;
		length -= PAGE_SIZE;
	}
}

void __init pagetable_init(void)
{
	struct map_desc *init_maps, *p, *q;
	unsigned long address = 0;
	int i;

	/*
	 * Setup initial mappings.  We use the page we allocated
	 * for zero page to hold the mappings, which will get
	 * overwritten by the vectors in traps_init().  The
	 * mappings must be in virtual address order.
	 */
	init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);

	p->physical   = virt_to_phys(init_maps);
	p->virtual    = 0;
	p->length     = PAGE_SIZE;
	p->domain     = DOMAIN_USER;
	p->prot_read  = 0;
	p->prot_write = 0;
	p->cacheable  = 1;
	p->bufferable = 0;

	p ++;

	for (i = 0; i < meminfo.nr_banks; i++) {
		if (meminfo.bank[i].size == 0)
			continue;

		p->physical   = meminfo.bank[i].start;
		p->virtual    = __phys_to_virt(p->physical);
		p->length     = meminfo.bank[i].size;
		p->domain     = DOMAIN_KERNEL;
		p->prot_read  = 0;
		p->prot_write = 1;
		p->cacheable  = 1;
		p->bufferable = 1;

		p ++;
	}

	p->physical   = FLUSH_BASE_PHYS;
	p->virtual    = FLUSH_BASE;
	p->length     = PGDIR_SIZE;
	p->domain     = DOMAIN_KERNEL;
	p->prot_read  = 1;
	p->prot_write = 0;
	p->cacheable  = 1;
	p->bufferable = 1;

	p ++;

#ifdef FLUSH_BASE_MINICACHE
	p->physical   = FLUSH_BASE_PHYS + PGDIR_SIZE;
	p->virtual    = FLUSH_BASE_MINICACHE;
	p->length     = PGDIR_SIZE;
	p->domain     = DOMAIN_KERNEL;
	p->prot_read  = 1;
	p->prot_write = 0;
	p->cacheable  = 1;
	p->bufferable = 0;

	p ++;
#endif

	/*
	 * We may have a mapping in virtual address 0.
	 * Clear it out.
	 */
	clear_mapping(0);

	/*
	 * Go through the initial mappings, but clear out any
	 * pgdir entries that are not in the description.
	 */
	i = 0;
	q = init_maps;
	do {
		if (address < q->virtual || q == p) {
			clear_mapping(address);
			address += PGDIR_SIZE;
		} else {
			create_mapping(q);

			address = q->virtual + q->length;
			address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;

			q ++;
		}
	} while (address != 0);

	/*
	 * Create the architecture specific mappings
	 */
	for (i = 0; i < io_desc_size; i++)
		create_mapping(io_desc + i);

	flush_cache_all();
}

/*
 * The mem_map array can get very big.  Mark the end of the valid mem_map
 * banks with PG_skip, and setup the address validity bitmap.
 */
void __init create_memmap_holes(void)
{
	unsigned int start_pfn, end_pfn = -1;
	struct page *pg = NULL;
	unsigned int i;

#define PFN(x)	(((x) - PHYS_OFFSET) >> PAGE_SHIFT)
#define free_bootmem(s,sz)  free_bootmem(((s)<<PAGE_SHIFT)+PHYS_OFFSET, (sz)<<PAGE_SHIFT)

	for (i = 0; i < meminfo.nr_banks; i++) {
		if (meminfo.bank[i].size == 0)
			continue;

		start_pfn = PFN(meminfo.bank[i].start);

		/*
		 * subtle here - if we have a full bank, then
		 * start_pfn == end_pfn, and we don't want to
		 * set PG_skip, or next_hash
		 */
		if (pg && start_pfn != end_pfn) {
			set_bit(PG_skip, &pg->flags);
			pg->next_hash = mem_map + start_pfn;

			start_pfn = PFN(PAGE_ALIGN(__pa(pg + 1)));
			end_pfn   = PFN(__pa(pg->next_hash) & PAGE_MASK);

			if (end_pfn != start_pfn)
				free_bootmem(start_pfn, end_pfn - start_pfn);

			pg = NULL;
		}

		end_pfn = PFN(meminfo.bank[i].start + meminfo.bank[i].size);

		if (end_pfn != PFN(meminfo.end))
			pg = mem_map + end_pfn;
	}

	if (pg) {
		set_bit(PG_skip, &pg->flags);
		pg->next_hash = NULL;
	}
}