summaryrefslogtreecommitdiffstats
path: root/arch/i386/kernel/time.c
blob: b4a7753b8cc88cc86a3a6bf87b2acd51191fde05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/*
 *  linux/arch/i386/kernel/time.c
 *
 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
 *
 * This file contains the PC-specific time handling details:
 * reading the RTC at bootup, etc..
 * 1994-07-02    Alan Modra
 *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 * 1995-03-26    Markus Kuhn
 *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
 *      precision CMOS clock update
 * 1996-05-03    Ingo Molnar
 *      fixed time warps in do_[slow|fast]_gettimeoffset()
 * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
 *		"A Kernel Model for Precision Timekeeping" by Dave Mills
 * 1998-09-05    (Various)
 *	More robust do_fast_gettimeoffset() algorithm implemented
 *	(works with APM, Cyrix 6x86MX and Centaur C6),
 *	monotonic gettimeofday() with fast_get_timeoffset(),
 *	drift-proof precision TSC calibration on boot
 *	(C. Scott Ananian <cananian@alumni.princeton.edu>, Andrew D.
 *	Balsa <andrebalsa@altern.org>, Philip Gladstone <philip@raptor.com>;
 *	ported from 2.0.35 Jumbo-9 by Michael Krause <m.krause@tu-harburg.de>).
 * 1998-12-16    Andrea Arcangeli
 *	Fixed Jumbo-9 code in 2.1.131: do_gettimeofday was missing 1 jiffy
 *	because was not accounting lost_ticks.
 * 1998-12-24 Copyright (C) 1998  Andrea Arcangeli
 *	Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *	serialize accesses to xtime/lost_ticks).
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/smp.h>

#include <asm/io.h>
#include <asm/smp.h>
#include <asm/irq.h>
#include <asm/msr.h>
#include <asm/delay.h>
#include <asm/mpspec.h>
#include <asm/uaccess.h>
#include <asm/processor.h>

#include <linux/mc146818rtc.h>
#include <linux/timex.h>
#include <linux/config.h>

#include <asm/fixmap.h>
#include <asm/cobalt.h>

/*
 * for x86_do_profile()
 */
#include <linux/irq.h>


unsigned long cpu_hz;	/* Detected as we calibrate the TSC */

/* Number of usecs that the last interrupt was delayed */
static int delay_at_last_interrupt;

static unsigned long last_tsc_low; /* lsb 32 bits of Time Stamp Counter */

/* Cached *multiplier* to convert TSC counts to microseconds.
 * (see the equation below).
 * Equal to 2^32 * (1 / (clocks per usec) ).
 * Initialized in time_init.
 */
unsigned long fast_gettimeoffset_quotient=0;

extern rwlock_t xtime_lock;

static inline unsigned long do_fast_gettimeoffset(void)
{
	register unsigned long eax, edx;

	/* Read the Time Stamp Counter */

	rdtsc(eax,edx);

	/* .. relative to previous jiffy (32 bits is enough) */
	eax -= last_tsc_low;	/* tsc_low delta */

	/*
         * Time offset = (tsc_low delta) * fast_gettimeoffset_quotient
         *             = (tsc_low delta) * (usecs_per_clock)
         *             = (tsc_low delta) * (usecs_per_jiffy / clocks_per_jiffy)
	 *
	 * Using a mull instead of a divl saves up to 31 clock cycles
	 * in the critical path.
         */

	__asm__("mull %2"
		:"=a" (eax), "=d" (edx)
		:"g" (fast_gettimeoffset_quotient),
		 "0" (eax));

	/* our adjusted time offset in microseconds */
	return delay_at_last_interrupt + edx;
}

#define TICK_SIZE tick

#ifndef CONFIG_X86_TSC

/* This function must be called with interrupts disabled 
 * It was inspired by Steve McCanne's microtime-i386 for BSD.  -- jrs
 * 
 * However, the pc-audio speaker driver changes the divisor so that
 * it gets interrupted rather more often - it loads 64 into the
 * counter rather than 11932! This has an adverse impact on
 * do_gettimeoffset() -- it stops working! What is also not
 * good is that the interval that our timer function gets called
 * is no longer 10.0002 ms, but 9.9767 ms. To get around this
 * would require using a different timing source. Maybe someone
 * could use the RTC - I know that this can interrupt at frequencies
 * ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix
 * it so that at startup, the timer code in sched.c would select
 * using either the RTC or the 8253 timer. The decision would be
 * based on whether there was any other device around that needed
 * to trample on the 8253. I'd set up the RTC to interrupt at 1024 Hz,
 * and then do some jiggery to have a version of do_timer that 
 * advanced the clock by 1/1024 s. Every time that reached over 1/100
 * of a second, then do all the old code. If the time was kept correct
 * then do_gettimeoffset could just return 0 - there is no low order
 * divider that can be accessed.
 *
 * Ideally, you would be able to use the RTC for the speaker driver,
 * but it appears that the speaker driver really needs interrupt more
 * often than every 120 us or so.
 *
 * Anyway, this needs more thought....		pjsg (1993-08-28)
 * 
 * If you are really that interested, you should be reading
 * comp.protocols.time.ntp!
 */

static unsigned long do_slow_gettimeoffset(void)
{
	int count;

	static int count_p = LATCH;    /* for the first call after boot */
	static unsigned long jiffies_p = 0;

	/*
	 * cache volatile jiffies temporarily; we have IRQs turned off. 
	 */
	unsigned long jiffies_t;

	/* timer count may underflow right here */
	outb_p(0x00, 0x43);	/* latch the count ASAP */

	count = inb_p(0x40);	/* read the latched count */

	/*
	 * We do this guaranteed double memory access instead of a _p 
	 * postfix in the previous port access. Wheee, hackady hack
	 */
 	jiffies_t = jiffies;

	count |= inb_p(0x40) << 8;

	/*
	 * avoiding timer inconsistencies (they are rare, but they happen)...
	 * there are two kinds of problems that must be avoided here:
	 *  1. the timer counter underflows
	 *  2. hardware problem with the timer, not giving us continuous time,
	 *     the counter does small "jumps" upwards on some Pentium systems,
	 *     (see c't 95/10 page 335 for Neptun bug.)
	 */

/* you can safely undefine this if you don't have the Neptune chipset */

#define BUGGY_NEPTUN_TIMER

	if( jiffies_t == jiffies_p ) {
		if( count > count_p ) {
			/* the nutcase */

			outb_p(0x0A, 0x20);

			/* assumption about timer being IRQ1 */
			if( inb(0x20) & 0x01 ) {
				/*
				 * We cannot detect lost timer interrupts ... 
				 * well, that's why we call them lost, don't we? :)
				 * [hmm, on the Pentium and Alpha we can ... sort of]
				 */
				count -= LATCH;
			} else {
#ifdef BUGGY_NEPTUN_TIMER
				/*
				 * for the Neptun bug we know that the 'latch'
				 * command doesnt latch the high and low value
				 * of the counter atomically. Thus we have to 
				 * substract 256 from the counter 
				 * ... funny, isnt it? :)
				 */

				count -= 256;
#else
				printk("do_slow_gettimeoffset(): hardware timer problem?\n");
#endif
			}
		}
	} else
		jiffies_p = jiffies_t;

	count_p = count;

	count = ((LATCH-1) - count) * TICK_SIZE;
	count = (count + LATCH/2) / LATCH;

	return count;
}

static unsigned long (*do_gettimeoffset)(void) = do_slow_gettimeoffset;

#else

#define do_gettimeoffset()	do_fast_gettimeoffset()

#endif

/*
 * This version of gettimeofday has microsecond resolution
 * and better than microsecond precision on fast x86 machines with TSC.
 */
void do_gettimeofday(struct timeval *tv)
{
	extern volatile unsigned long lost_ticks;
	unsigned long flags;
	unsigned long usec, sec;

	read_lock_irqsave(&xtime_lock, flags);
	usec = do_gettimeoffset();
	{
		unsigned long lost = lost_ticks;
		if (lost)
			usec += lost * (1000000 / HZ);
	}
	sec = xtime.tv_sec;
	usec += xtime.tv_usec;
	read_unlock_irqrestore(&xtime_lock, flags);

	while (usec >= 1000000) {
		usec -= 1000000;
		sec++;
	}

	tv->tv_sec = sec;
	tv->tv_usec = usec;
}

void do_settimeofday(struct timeval *tv)
{
	write_lock_irq(&xtime_lock);
	/* This is revolting. We need to set the xtime.tv_usec
	 * correctly. However, the value in this location is
	 * is value at the last tick.
	 * Discover what correction gettimeofday
	 * would have done, and then undo it!
	 */
	tv->tv_usec -= do_gettimeoffset();

	while (tv->tv_usec < 0) {
		tv->tv_usec += 1000000;
		tv->tv_sec--;
	}

	xtime = *tv;
	time_adjust = 0;		/* stop active adjtime() */
	time_status |= STA_UNSYNC;
	time_maxerror = NTP_PHASE_LIMIT;
	time_esterror = NTP_PHASE_LIMIT;
	write_unlock_irq(&xtime_lock);
}

/*
 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
 * called 500 ms after the second nowtime has started, because when
 * nowtime is written into the registers of the CMOS clock, it will
 * jump to the next second precisely 500 ms later. Check the Motorola
 * MC146818A or Dallas DS12887 data sheet for details.
 *
 * BUG: This routine does not handle hour overflow properly; it just
 *      sets the minutes. Usually you'll only notice that after reboot!
 */
static int set_rtc_mmss(unsigned long nowtime)
{
	int retval = 0;
	int real_seconds, real_minutes, cmos_minutes;
	unsigned char save_control, save_freq_select;

	save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);

	save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);

	cmos_minutes = CMOS_READ(RTC_MINUTES);
	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
		BCD_TO_BIN(cmos_minutes);

	/*
	 * since we're only adjusting minutes and seconds,
	 * don't interfere with hour overflow. This avoids
	 * messing with unknown time zones but requires your
	 * RTC not to be off by more than 15 minutes
	 */
	real_seconds = nowtime % 60;
	real_minutes = nowtime / 60;
	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
		real_minutes += 30;		/* correct for half hour time zone */
	real_minutes %= 60;

	if (abs(real_minutes - cmos_minutes) < 30) {
		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
			BIN_TO_BCD(real_seconds);
			BIN_TO_BCD(real_minutes);
		}
		CMOS_WRITE(real_seconds,RTC_SECONDS);
		CMOS_WRITE(real_minutes,RTC_MINUTES);
	} else {
		printk(KERN_WARNING
		       "set_rtc_mmss: can't update from %d to %d\n",
		       cmos_minutes, real_minutes);
		retval = -1;
	}

	/* The following flags have to be released exactly in this order,
	 * otherwise the DS12887 (popular MC146818A clone with integrated
	 * battery and quartz) will not reset the oscillator and will not
	 * update precisely 500 ms later. You won't find this mentioned in
	 * the Dallas Semiconductor data sheets, but who believes data
	 * sheets anyway ...                           -- Markus Kuhn
	 */
	CMOS_WRITE(save_control, RTC_CONTROL);
	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);

	return retval;
}

/* last time the cmos clock got updated */
static long last_rtc_update = 0;

/*
 * timer_interrupt() needs to keep up the real-time clock,
 * as well as call the "do_timer()" routine every clocktick
 */
static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
#ifdef CONFIG_VISWS
	/* Clear the interrupt */
	co_cpu_write(CO_CPU_STAT,co_cpu_read(CO_CPU_STAT) & ~CO_STAT_TIMEINTR);
#endif
	do_timer(regs);
/*
 * In the SMP case we use the local APIC timer interrupt to do the
 * profiling, except when we simulate SMP mode on a uniprocessor
 * system, in that case we have to call the local interrupt handler.
 */
#ifndef CONFIG_X86_LOCAL_APIC
	if (!user_mode(regs))
		x86_do_profile(regs->eip);
#else
	if (!smp_found_config)
		smp_local_timer_interrupt(regs);
#endif

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 */
	if ((time_status & STA_UNSYNC) == 0 &&
	    xtime.tv_sec > last_rtc_update + 660 &&
	    xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 &&
	    xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) {
		if (set_rtc_mmss(xtime.tv_sec) == 0)
			last_rtc_update = xtime.tv_sec;
		else
			last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
	}
	    
#ifdef CONFIG_MCA
	if( MCA_bus ) {
		/* The PS/2 uses level-triggered interrupts.  You can't
		turn them off, nor would you want to (any attempt to
		enable edge-triggered interrupts usually gets intercepted by a
		special hardware circuit).  Hence we have to acknowledge
		the timer interrupt.  Through some incredibly stupid
		design idea, the reset for IRQ 0 is done by setting the
		high bit of the PPI port B (0x61).  Note that some PS/2s,
		notably the 55SX, work fine if this is removed.  */

		irq = inb_p( 0x61 );	/* read the current state */
		outb_p( irq|0x80, 0x61 );	/* reset the IRQ */
	}
#endif
}

static int use_tsc = 0;

/*
 * This is the same as the above, except we _also_ save the current
 * Time Stamp Counter value at the time of the timer interrupt, so that
 * we later on can estimate the time of day more exactly.
 */
static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	int count;

	/*
	 * Here we are in the timer irq handler. We just have irqs locally
	 * disabled but we don't know if the timer_bh is running on the other
	 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
	 * the irq version of write_lock because as just said we have irq
	 * locally disabled. -arca
	 */
	write_lock(&xtime_lock);

	if (use_tsc)
	{
		/*
		 * It is important that these two operations happen almost at
		 * the same time. We do the RDTSC stuff first, since it's
		 * faster. To avoid any inconsistencies, we need interrupts
		 * disabled locally.
		 */

		/*
		 * Interrupts are just disabled locally since the timer irq
		 * has the SA_INTERRUPT flag set. -arca
		 */
	
		/* read Pentium cycle counter */

		rdtscl(last_tsc_low);

		outb_p(0x00, 0x43);     /* latch the count ASAP */

		count = inb_p(0x40);    /* read the latched count */
		count |= inb(0x40) << 8;

		count = ((LATCH-1) - count) * TICK_SIZE;
		delay_at_last_interrupt = (count + LATCH/2) / LATCH;
	}
 
	do_timer_interrupt(irq, NULL, regs);

	write_unlock(&xtime_lock);

}

/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
 *
 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
 * machines were long is 32-bit! (However, as time_t is signed, we
 * will already get problems at other places on 2038-01-19 03:14:08)
 */
static inline unsigned long mktime(unsigned int year, unsigned int mon,
	unsigned int day, unsigned int hour,
	unsigned int min, unsigned int sec)
{
	if (0 >= (int) (mon -= 2)) {	/* 1..12 -> 11,12,1..10 */
		mon += 12;	/* Puts Feb last since it has leap day */
		year -= 1;
	}
	return (((
	    (unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) +
	      year*365 - 719499
	    )*24 + hour /* now have hours */
	   )*60 + min /* now have minutes */
	  )*60 + sec; /* finally seconds */
}

/* not static: needed by APM */
unsigned long get_cmos_time(void)
{
	unsigned int year, mon, day, hour, min, sec;
	int i;

	/* The Linux interpretation of the CMOS clock register contents:
	 * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
	 * RTC registers show the second which has precisely just started.
	 * Let's hope other operating systems interpret the RTC the same way.
	 */
	/* read RTC exactly on falling edge of update flag */
	for (i = 0 ; i < 1000000 ; i++)	/* may take up to 1 second... */
		if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
			break;
	for (i = 0 ; i < 1000000 ; i++)	/* must try at least 2.228 ms */
		if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
			break;
	do { /* Isn't this overkill ? UIP above should guarantee consistency */
		sec = CMOS_READ(RTC_SECONDS);
		min = CMOS_READ(RTC_MINUTES);
		hour = CMOS_READ(RTC_HOURS);
		day = CMOS_READ(RTC_DAY_OF_MONTH);
		mon = CMOS_READ(RTC_MONTH);
		year = CMOS_READ(RTC_YEAR);
	} while (sec != CMOS_READ(RTC_SECONDS));
	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
	  {
	    BCD_TO_BIN(sec);
	    BCD_TO_BIN(min);
	    BCD_TO_BIN(hour);
	    BCD_TO_BIN(day);
	    BCD_TO_BIN(mon);
	    BCD_TO_BIN(year);
	  }
	if ((year += 1900) < 1970)
		year += 100;
	return mktime(year, mon, day, hour, min, sec);
}

static struct irqaction irq0  = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};

/* ------ Calibrate the TSC ------- 
 * Return 2^32 * (1 / (TSC clocks per usec)) for do_fast_gettimeoffset().
 * Too much 64-bit arithmetic here to do this cleanly in C, and for
 * accuracy's sake we want to keep the overhead on the CTC speaker (channel 2)
 * output busy loop as low as possible. We avoid reading the CTC registers
 * directly because of the awkward 8-bit access mechanism of the 82C54
 * device.
 */

#define CALIBRATE_LATCH	(5 * LATCH)
#define CALIBRATE_TIME	(5 * 1000020/HZ)

static unsigned long __init calibrate_tsc(void)
{
       /* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Now let's take care of CTC channel 2
	 *
	 * Set the Gate high, program CTC channel 2 for mode 0,
	 * (interrupt on terminal count mode), binary count,
	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);			/* binary, mode 0, LSB/MSB, Ch 2 */
	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */

	{
		unsigned long startlow, starthigh;
		unsigned long endlow, endhigh;
		unsigned long count;

		rdtsc(startlow,starthigh);
		count = 0;
		do {
			count++;
		} while ((inb(0x61) & 0x20) == 0);
		rdtsc(endlow,endhigh);

		last_tsc_low = endlow;

		/* Error: ECTCNEVERSET */
		if (count <= 1)
			goto bad_ctc;

		/* 64-bit subtract - gcc just messes up with long longs */
		__asm__("subl %2,%0\n\t"
			"sbbl %3,%1"
			:"=a" (endlow), "=d" (endhigh)
			:"g" (startlow), "g" (starthigh),
			 "0" (endlow), "1" (endhigh));

		/* Error: ECPUTOOFAST */
		if (endhigh)
			goto bad_ctc;

		/* Error: ECPUTOOSLOW */
		if (endlow <= CALIBRATE_TIME)
			goto bad_ctc;

		__asm__("divl %2"
			:"=a" (endlow), "=d" (endhigh)
			:"r" (endlow), "0" (0), "1" (CALIBRATE_TIME));

		return endlow;
	}

	/*
	 * The CTC wasn't reliable: we got a hit on the very first read,
	 * or the CPU was so fast/slow that the quotient wouldn't fit in
	 * 32 bits..
	 */
bad_ctc:
	return 0;
}

void __init time_init(void)
{
	extern int x86_udelay_tsc;
	
	xtime.tv_sec = get_cmos_time();
	xtime.tv_usec = 0;

/*
 * If we have APM enabled or the CPU clock speed is variable
 * (CPU stops clock on HLT or slows clock to save power)
 * then the TSC timestamps may diverge by up to 1 jiffy from
 * 'real time' but nothing will break.
 * The most frequent case is that the CPU is "woken" from a halt
 * state by the timer interrupt itself, so we get 0 error. In the
 * rare cases where a driver would "wake" the CPU and request a
 * timestamp, the maximum error is < 1 jiffy. But timestamps are
 * still perfectly ordered.
 * Note that the TSC counter will be reset if APM suspends
 * to disk; this won't break the kernel, though, 'cuz we're
 * smart.  See arch/i386/kernel/apm.c.
 */
 	/*
 	 *	Firstly we have to do a CPU check for chips with
 	 * 	a potentially buggy TSC. At this point we haven't run
 	 *	the ident/bugs checks so we must run this hook as it
 	 *	may turn off the TSC flag.
 	 *
 	 *	NOTE: this doesnt yet handle SMP 486 machines where only
 	 *	some CPU's have a TSC. Thats never worked and nobody has
 	 *	moaned if you have the only one in the world - you fix it!
 	 */
 
 	dodgy_tsc();
 	
	if (boot_cpu_data.x86_capability & X86_FEATURE_TSC) {
		unsigned long tsc_quotient = calibrate_tsc();
		if (tsc_quotient) {
			fast_gettimeoffset_quotient = tsc_quotient;
			use_tsc = 1;
			/*
			 *	We could be more selective here I suspect
			 *	and just enable this for the next intel chips ?
			 */
			x86_udelay_tsc = 1;
#ifndef do_gettimeoffset
			do_gettimeoffset = do_fast_gettimeoffset;
#endif
			do_get_fast_time = do_gettimeofday;

			/* report CPU clock rate in Hz.
			 * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) =
			 * clock/second. Our precision is about 100 ppm.
			 */
			{	unsigned long eax=0, edx=1000000;
				__asm__("divl %2"
		       		:"=a" (cpu_hz), "=d" (edx)
        	       		:"r" (tsc_quotient),
	                	"0" (eax), "1" (edx));
				printk("Detected %ld Hz processor.\n", cpu_hz);
			}
		}
	}

#ifdef CONFIG_VISWS
	printk("Starting Cobalt Timer system clock\n");

	/* Set the countdown value */
	co_cpu_write(CO_CPU_TIMEVAL, CO_TIME_HZ/HZ);

	/* Start the timer */
	co_cpu_write(CO_CPU_CTRL, co_cpu_read(CO_CPU_CTRL) | CO_CTRL_TIMERUN);

	/* Enable (unmask) the timer interrupt */
	co_cpu_write(CO_CPU_CTRL, co_cpu_read(CO_CPU_CTRL) & ~CO_CTRL_TIMEMASK);

	/* Wire cpu IDT entry to s/w handler (and Cobalt APIC to IDT) */
	setup_irq(CO_IRQ_TIMER, &irq0);
#else
	setup_irq(0, &irq0);
#endif
}