summaryrefslogtreecommitdiffstats
path: root/arch/ia64/lib/copy_user.S
blob: 58c92876f81dc438be0579e3a56efe4e77aff66b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// The label comes first because our store instruction contains a comma
// and confuse the preprocessor otherwise
//
#undef DEBUG
#ifdef DEBUG
#define EX(y,x...)				\
99:	x
#else
#define EX(y,x...)				\
	.section __ex_table,"a";		\
	data4 @gprel(99f);			\
	data4 y-99f;				\
	.previous;				\
99:	x
#endif

//
// Tuneable parameters
//
#define COPY_BREAK	16	// we do byte copy below (must be >=16)
#define PIPE_DEPTH	4	// pipe depth

#define EPI		p[PIPE_DEPTH-1] // PASTE(p,16+PIPE_DEPTH-1)

//
// arguments
//
#define dst		in0
#define src		in1
#define len		in2

//
// local registers
//
#define cnt		r18
#define len2		r19
#define saved_lc	r20
#define saved_pr	r21
#define tmp		r22
#define val		r23
#define src1		r24
#define dst1		r25
#define src2		r26
#define dst2		r27
#define len1		r28
#define enddst		r29
#define endsrc		r30
#define saved_pfs	r31
 	.text
 	.psr	abi64
 	.psr	lsb

 	.align	16
 	.global	__copy_user
 	.proc	__copy_user
__copy_user:
	alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7)

	.rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH]
	.rotp p[PIPE_DEPTH]

	adds len2=-1,len	// br.ctop is repeat/until
	mov ret0=r0

	;;			// RAW of cfm when len=0
	cmp.eq p8,p0=r0,len	// check for zero length
	mov saved_lc=ar.lc	// preserve ar.lc (slow)
(p8)	br.ret.spnt.few rp	// empty mempcy()
	;;
	add enddst=dst,len	// first byte after end of source
	add endsrc=src,len	// first byte after end of destination
	mov saved_pr=pr		// preserve predicates

	mov dst1=dst		// copy because of rotation
	mov ar.ec=PIPE_DEPTH
	mov pr.rot=1<<16	// p16=true all others are false

	mov src1=src		// copy because of rotation
	mov ar.lc=len2		// initialize lc for small count
	cmp.lt p10,p7=COPY_BREAK,len	// if len > COPY_BREAK then long copy 

	xor tmp=src,dst		// same alignment test prepare
(p10)	br.cond.dptk.few long_memcpy
	;;			// RAW pr.rot/p16 ?
	//
	// Now we do the byte by byte loop with software pipeline
	//
	// p7 is necessarily false by now
1:				
	EX(failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)

	EX(failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
	br.ctop.dptk.few 1b
	;;
	mov ar.lc=saved_lc
	mov pr=saved_pr,0xffffffffffff0000
	mov ar.pfs=saved_pfs		// restore ar.ec
	br.ret.sptk.few rp	// end of short memcpy

	//
	// Beginning of long mempcy (i.e. > 16 bytes)
	//
long_memcpy:
	tbit.nz p6,p7=src1,0	// odd alignement
	and tmp=7,tmp
	;;
	cmp.eq p10,p8=r0,tmp
	mov len1=len		// copy because of rotation
(p8)	br.cond.dpnt.few 1b	// XXX Fixme. memcpy_diff_align 
	;;
	// At this point we know we have more than 16 bytes to copy
	// and also that both src and dest have the same alignment
	// which may not be the one we want. So for now we must move
	// forward slowly until we reach 16byte alignment: no need to
	// worry about reaching the end of buffer.
	//
	EX(failure_in1,(p6) ld1 val1[0]=[src1],1)	// 1-byte aligned
(p6)	adds len1=-1,len1;;
	tbit.nz p7,p0=src1,1
	;;
	EX(failure_in1,(p7) ld2 val1[1]=[src1],2)	// 2-byte aligned
(p7)	adds len1=-2,len1;;
	tbit.nz p8,p0=src1,2
	;;
	//
	// Stop bit not required after ld4 because if we fail on ld4
	// we have never executed the ld1, therefore st1 is not executed.
	//
	EX(failure_in1,(p8) ld4 val2[0]=[src1],4)	// 4-byte aligned
	EX(failure_out,(p6) st1 [dst1]=val1[0],1)
	tbit.nz p9,p0=src1,3
	;;
	//
	// Stop bit not required after ld8 because if we fail on ld8
	// we have never executed the ld2, therefore st2 is not executed.
	//
	EX(failure_in1,(p9) ld8 val2[1]=[src1],8)	// 8-byte aligned
	EX(failure_out,(p7) st2 [dst1]=val1[1],2)
(p8)	adds len1=-4,len1
	;;
	EX(failure_out, (p8) st4 [dst1]=val2[0],4)
(p9)	adds len1=-8,len1;;
	shr.u cnt=len1,4		// number of 128-bit (2x64bit) words
	;;
	EX(failure_out, (p9) st8 [dst1]=val2[1],8)
	tbit.nz p6,p0=len1,3	
	cmp.eq p7,p0=r0,cnt
	adds tmp=-1,cnt			// br.ctop is repeat/until
(p7)	br.cond.dpnt.few .dotail	// we have less than 16 bytes left
	;;
	adds src2=8,src1	
	adds dst2=8,dst1
	mov ar.lc=tmp
	;;
	//
	// 16bytes/iteration
	//
2:
	EX(failure_in3,(p16) ld8 val1[0]=[src1],16)
(p16)	ld8 val2[0]=[src2],16

	EX(failure_out, (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16)
(EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
	br.ctop.dptk.few 2b
	;;			// RAW on src1 when fall through from loop
	//
	// Tail correction based on len only
	//
	// No matter where we come from (loop or test) the src1 pointer
	// is 16 byte aligned AND we have less than 16 bytes to copy.
	//
.dotail:			
	EX(failure_in1,(p6) ld8 val1[0]=[src1],8)	// at least 8 bytes
	tbit.nz p7,p0=len1,2
	;;
	EX(failure_in1,(p7) ld4 val1[1]=[src1],4)	// at least 4 bytes
 	tbit.nz p8,p0=len1,1
	;;
	EX(failure_in1,(p8) ld2 val2[0]=[src1],2)	// at least 2 bytes
	tbit.nz p9,p0=len1,0
	;;
	EX(failure_out, (p6) st8 [dst1]=val1[0],8)
	;;
	EX(failure_in1,(p9) ld1 val2[1]=[src1])		// only 1 byte left
	mov ar.lc=saved_lc
	;;
	EX(failure_out,(p7) st4 [dst1]=val1[1],4)
	mov pr=saved_pr,0xffffffffffff0000
	;;
	EX(failure_out, (p8)	st2 [dst1]=val2[0],2)
	mov ar.pfs=saved_pfs
	;;
	EX(failure_out, (p9)	st1 [dst1]=val2[1])
	br.ret.dptk.few rp



	//
	// Here we handle the case where the byte by byte copy fails
	// on the load.
	// Several factors make the zeroing of the rest of the buffer kind of
	// tricky:
	//	- the pipeline: loads/stores are not in sync (pipeline)
	//
	//	  In the same loop iteration, the dst1 pointer does not directly
	//	  reflect where the faulty load was.
	//	  
	//	- pipeline effect
	//	  When you get a fault on load, you may have valid data from
	//	  previous loads not yet store in transit. Such data must be
	//	  store normally before moving onto zeroing the rest.
	//
	//	- single/multi dispersal independence.
	//
	// solution:
	//	- we don't disrupt the pipeline, i.e. data in transit in
	//	  the software pipeline will be eventually move to memory.
	//	  We simply replace the load with a simple mov and keep the
	//	  pipeline going. We can't really do this inline because 
	//	  p16 is always reset to 1 when lc > 0.
	//
failure_in_pipe1:
	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
1:
(p16)	mov val1[0]=r0
(EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1
	br.ctop.dptk.few 1b
	;;
	mov pr=saved_pr,0xffffffffffff0000
	mov ar.lc=saved_lc
	mov ar.pfs=saved_pfs
	br.ret.dptk.few rp


	//
	// Here we handle the head & tail part when we check for alignment.
	// The following code handles only the load failures. The
	// main diffculty comes from the fact that loads/stores are
	// scheduled. So when you fail on a load, the stores corresponding
	// to previous successful loads must be executed.
	//
	// However some simplifications are possible given the way
	// things work.
	// 
	// 1) HEAD
	// Theory of operation:
	//
	//  Page A   | Page B
	//  ---------|-----
	//          1|8 x
	//	  1 2|8 x
	//	    4|8 x
	//	  1 4|8 x
	//        2 4|8 x
	//      1 2 4|8 x
	//	     |1
	//	     |2 x
	//	     |4 x
	//
	// page_size >= 4k (2^12).  (x means 4, 2, 1)
	// Here we suppose Page A exists and Page B does not.
	//
	// As we move towards eight byte alignment we may encounter faults.
	// The numbers on each page show the size of the load (current alignment).
	//
	// Key point:
	//	- if you fail on 1, 2, 4 then you have never executed any smaller
	//	  size loads, e.g. failing ld4 means no ld1 nor ld2 executed 
	//	  before.
	//
	// This allows us to simplify the cleanup code, because basically you
	// only have to worry about "pending" stores in the case of a failing
	// ld8(). Given the way the code is written today, this means only 
	// worry about st2, st4. There we can use the information encapsulated
	// into the predicates.
	// 
	// Other key point:
	// 	- if you fail on the ld8 in the head, it means you went straight
	//	  to it, i.e. 8byte alignment within an unexisting page.
	// Again this comes from the fact that if you crossed just for the the ld8 then
	// you are 8byte aligned but also 16byte align, therefore you would
	// either go for the 16byte copy loop OR the ld8 in the tail part.
	// The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible
	// because it would mean you had 15bytes to copy in which case you 
	// would have defaulted to the byte by byte copy.
	//
	//
	// 2) TAIL
	// Here we now we have less than 16 bytes AND we are either 8 or 16 byte
	// aligned.
	//
	// Key point:
	// This means that we either:
	//		- are right on a page boundary
	//	OR 
	//		- are at more than 16 bytes from a page boundary with 
	//		  at most 15 bytes to copy: no chance of crossing.
	//
	// This allows us to assume that if we fail on a load we haven't possibly
	// executed any of the previous (tail) ones, so we don't need to do 
	// any stores. For instance, if we fail on ld2, this means we had 
	// 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4.
	//
	// This means that we are in a situation similar the a fault in the 
	// head part. That's nice! 
	// 
failure_in1:
//	sub ret0=enddst,dst1	// number of bytes to zero, i.e. not copied
//	sub len=enddst,dst1,1
	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
	sub len=endsrc,src1,1
	//
	// we know that ret0 can never be zero at this point
	// because we failed why trying to do a load, i.e. there is still
	// some work to do.
	// The failure_in1bis and length problem is taken care of at the
	// calling side.
	//
	;;
failure_in1bis:			// from (failure_in3)
	mov ar.lc=len		// Continue with a stupid byte store.
	;;
5:
	st1 [dst1]=r0,1
	br.cloop.dptk.few 5b	
	;;
skip_loop:
	mov pr=saved_pr,0xffffffffffff0000
	mov ar.lc=saved_lc
	mov ar.pfs=saved_pfs
	br.ret.dptk.few rp

	//
	// Here we simply restart the loop but instead
	// of doing loads we fill the pipeline with zeroes
	// We can't simply store r0 because we may have valid 
	// data in transit in the pipeline.
	// ar.lc and ar.ec are setup correctly at this point
	//
	// we MUST use src1/endsrc here and not dst1/enddst because
	// of the pipeline effect.
	//
failure_in3:
	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
	;;
2:
(p16)	mov val1[0]=r0
(p16)	mov val2[0]=r0
(EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16
(EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
	br.ctop.dptk.few 2b
	;;
	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ?
	sub len=enddst,dst1,1		// precompute len
(p6)	br.cond.dptk.few failure_in1bis	
	;;
	mov pr=saved_pr,0xffffffffffff0000
	mov ar.lc=saved_lc
	mov ar.pfs=saved_pfs
	br.ret.dptk.few rp

	//
	// handling of failures on stores: that's the easy part
	//
failure_out:
	sub ret0=enddst,dst1
	mov pr=saved_pr,0xffffffffffff0000
	mov ar.lc=saved_lc

	mov ar.pfs=saved_pfs
	br.ret.dptk.few rp


 	.endp __copy_user