summaryrefslogtreecommitdiffstats
path: root/arch/mips/galileo-boards/ev64120/pci_bios.c
blob: 75d2b4c8baa445b01d9bb8931e72cf032b6badbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
/*
 * BRIEF MODULE DESCRIPTION
 * Galileo Evaluation Boards PCI support.
 *
 * The general-purpose functions to read/write and configure the GT64120A's
 * PCI registers (function names start with pci0 or pci1) are either direct
 * copies of functions written by Galileo Technology, or are modifications
 * of their functions to work with Linux 2.4 vs Linux 2.2.  These functions
 * are Copyright - Galileo Technology.
 *
 * Other functions are derived from other MIPS PCI implementations, or were
 * written by RidgeRun, Inc,  Copyright (C) 2000 RidgeRun, Inc.
 *   glonnon@ridgerun.com, skranz@ridgerun.com, stevej@ridgerun.com
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
 *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
 *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
 *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *  You should have received a copy of the  GNU General Public License along
 *  with this program; if not, write  to the Free Software Foundation, Inc.,
 *  675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include <linux/config.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/malloc.h>
#include <linux/version.h>
#include <asm/pci.h>
#include <asm/io.h>
#include <asm/galileo-boards/ev64120.h>
#include <asm/gt64120.h>

#include <linux/init.h>

#undef PCI_DEBUG

#ifdef PCI_DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif

#ifdef CONFIG_PCI

#define SELF 0

/*
 * These functions and structures provide the BIOS scan and mapping of the PCI
 * devices.
 */

#define MAX_PCI_DEVS 10

struct pci_device {
	u32 slot;
	u32 BARtype[6];
	u32 BARsize[6];
};

static void __init scan_and_initialize_pci(void);
static u32 __init scan_pci_bus(struct pci_device *pci_devices);
static void __init allocate_pci_space(struct pci_device *pci_devices);

static void __init galileo_pcibios_fixup_bus(struct pci_bus *bus);

/*
 * The functions that actually read and write to the controller.
 * Copied from or modified from Galileo Technology code.
 */
static unsigned int pci0ReadConfigReg(int offset, struct pci_dev *device);
static void pci0WriteConfigReg(unsigned int offset,
			       struct pci_dev *device, unsigned int data);
static unsigned int pci1ReadConfigReg(int offset, struct pci_dev *device);
static void pci1WriteConfigReg(unsigned int offset,
			       struct pci_dev *device, unsigned int data);

static void pci0MapIOspace(unsigned int pci0IoBase,
			   unsigned int pci0IoLength);
static void pci1MapIOspace(unsigned int pci1IoBase,
			   unsigned int pci1IoLength);
static void pci0MapMemory0space(unsigned int pci0Mem0Base,
				unsigned int pci0Mem0Length);
static void pci1MapMemory0space(unsigned int pci1Mem0Base,
				unsigned int pci1Mem0Length);
static void pci0MapMemory1space(unsigned int pci0Mem1Base,
				unsigned int pci0Mem1Length);
static void pci1MapMemory1space(unsigned int pci1Mem1Base,
				unsigned int pci1Mem1Length);
static unsigned int pci0GetIOspaceBase(void);
static unsigned int pci0GetIOspaceSize(void);
static unsigned int pci0GetMemory0Base(void);
static unsigned int pci0GetMemory0Size(void);
static unsigned int pci0GetMemory1Base(void);
static unsigned int pci0GetMemory1Size(void);
static unsigned int pci1GetIOspaceBase(void);
static unsigned int pci1GetIOspaceSize(void);
static unsigned int pci1GetMemory0Base(void);
static unsigned int pci1GetMemory0Size(void);
static unsigned int pci1GetMemory1Base(void);
static unsigned int pci1GetMemory1Size(void);


/*  Functions to implement "pci ops"  */
static int galileo_pcibios_read_config_word(struct pci_dev *dev,
					    int offset, u16 * val);
static int galileo_pcibios_read_config_byte(struct pci_dev *dev,
					    int offset, u8 * val);
static int galileo_pcibios_read_config_dword(struct pci_dev *dev,
					     int offset, u32 * val);
static int galileo_pcibios_write_config_byte(struct pci_dev *dev,
					     int offset, u8 val);
static int galileo_pcibios_write_config_word(struct pci_dev *dev,
					     int offset, u16 val);
static int galileo_pcibios_write_config_dword(struct pci_dev *dev,
					      int offset, u32 val);
static void galileo_pcibios_set_master(struct pci_dev *dev);

/*
 * General-purpose PCI functions.
 */

/*
 * pci0MapIOspace - Maps PCI0 IO space for the master.
 * Inputs: base and length of pci0Io
 */
static void pci0MapIOspace(unsigned int pci0IoBase, unsigned int pci0IoLength)
{
	unsigned int pci0IoTop =
	    (unsigned int) (pci0IoBase + pci0IoLength);

	if (pci0IoLength == 0)
		pci0IoTop++;

	pci0IoBase = (unsigned int) (pci0IoBase >> 21);
	pci0IoTop = (unsigned int) (((pci0IoTop - 1) & 0x0fffffff) >> 21);
	GT_WRITE(GT_PCI0IOLD_OFS, pci0IoBase);
	GT_WRITE(GT_PCI0IOHD_OFS, pci0IoTop);
}

/*
 * pci1MapIOspace - Maps PCI1 IO space for the master.
 * Inputs: base and length of pci1Io
 */

static void pci1MapIOspace(unsigned int pci1IoBase,
			   unsigned int pci1IoLength)
{
	unsigned int pci1IoTop =
	    (unsigned int) (pci1IoBase + pci1IoLength);

	if (pci1IoLength == 0)
		pci1IoTop++;

	pci1IoBase = (unsigned int) (pci1IoBase >> 21);
	pci1IoTop = (unsigned int) (((pci1IoTop - 1) & 0x0fffffff) >> 21);
	GT_WRITE(GT_PCI1IOLD_OFS, pci1IoBase);
	GT_WRITE(GT_PCI1IOHD_OFS, pci1IoTop);
}

/*
 * pci0MapMemory0space - Maps PCI0 memory0 space for the master.
 * Inputs: base and length of pci0Mem0
 */

static void pci0MapMemory0space(unsigned int pci0Mem0Base,
				unsigned int pci0Mem0Length)
{
	unsigned int pci0Mem0Top = pci0Mem0Base + pci0Mem0Length;

	if (pci0Mem0Length == 0)
		pci0Mem0Top++;

	pci0Mem0Base = pci0Mem0Base >> 21;
	pci0Mem0Top = ((pci0Mem0Top - 1) & 0x0fffffff) >> 21;
	GT_WRITE(GT_PCI0M0LD_OFS, pci0Mem0Base);
	GT_WRITE(GT_PCI0M0HD_OFS, pci0Mem0Top);
}

/*
 * pci1MapMemory0space - Maps PCI1 memory0 space for the master.
 * Inputs: base and length of pci1Mem0
 */

static void pci1MapMemory0space(unsigned int pci1Mem0Base,
				unsigned int pci1Mem0Length)
{
	unsigned int pci1Mem0Top = pci1Mem0Base + pci1Mem0Length;

	if (pci1Mem0Length == 0)
		pci1Mem0Top++;

	pci1Mem0Base = pci1Mem0Base >> 21;
	pci1Mem0Top = ((pci1Mem0Top - 1) & 0x0fffffff) >> 21;
	GT_WRITE(GT_PCI1M0LD_OFS, pci1Mem0Base);
	GT_WRITE(GT_PCI1M0HD_OFS, pci1Mem0Top);
}

/*
 * pci0MapMemory1space - Maps PCI0 memory1 space for the master.
 * Inputs: base and length of pci0Mem1
 */

static void pci0MapMemory1space(unsigned int pci0Mem1Base,
				unsigned int pci0Mem1Length)
{
	unsigned int pci0Mem1Top = pci0Mem1Base + pci0Mem1Length;

	if (pci0Mem1Length == 0)
		pci0Mem1Top++;

	pci0Mem1Base = pci0Mem1Base >> 21;
	pci0Mem1Top = ((pci0Mem1Top - 1) & 0x0fffffff) >> 21;
	GT_WRITE(GT_PCI0M1LD_OFS, pci0Mem1Base);
	GT_WRITE(GT_PCI0M1HD_OFS, pci0Mem1Top);

}

/*
 * pci1MapMemory1space - Maps PCI1 memory1 space for the master.
 * Inputs: base and length of pci1Mem1
 */

static void pci1MapMemory1space(unsigned int pci1Mem1Base,
				unsigned int pci1Mem1Length)
{
	unsigned int pci1Mem1Top = pci1Mem1Base + pci1Mem1Length;

	if (pci1Mem1Length == 0)
		pci1Mem1Top++;

	pci1Mem1Base = pci1Mem1Base >> 21;
	pci1Mem1Top = ((pci1Mem1Top - 1) & 0x0fffffff) >> 21;
	GT_WRITE(GT_PCI1M1LD_OFS, pci1Mem1Base);
	GT_WRITE(GT_PCI1M1HD_OFS, pci1Mem1Top);
}

/*
 * pci0GetIOspaceBase - Return PCI0 IO Base Address.
 * Inputs: N/A
 * Returns: PCI0 IO Base Address.
 */

static unsigned int pci0GetIOspaceBase(void)
{
	unsigned int base;
	GT_READ(GT_PCI0IOLD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci0GetIOspaceSize - Return PCI0 IO Bar Size.
 * Inputs: N/A
 * Returns: PCI0 IO Bar Size.
 */
static unsigned int pci0GetIOspaceSize(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI0IOLD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI0IOHD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}

/*
 * pci0GetMemory0Base - Return PCI0 Memory 0 Base Address.
 * Inputs: N/A
 * Returns: PCI0 Memory 0 Base Address.
 */
static unsigned int pci0GetMemory0Base(void)
{
	unsigned int base;
	GT_READ(GT_PCI0M0LD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci0GetMemory0Size - Return PCI0 Memory 0 Bar Size.
 * Inputs: N/A
 * Returns: PCI0 Memory 0 Bar Size.
 */
static unsigned int pci0GetMemory0Size(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI0M0LD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI0M0HD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}

/*
 * pci0GetMemory1Base - Return PCI0 Memory 1 Base Address.
 * Inputs: N/A
 * Returns: PCI0 Memory 1 Base Address.
 */
static unsigned int pci0GetMemory1Base(void)
{
	unsigned int base;
	GT_READ(GT_PCI0M1LD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci0GetMemory1Size - Return PCI0 Memory 1 Bar Size.
 * Inputs: N/A
 * Returns: PCI0 Memory 1 Bar Size.
 */

static unsigned int pci0GetMemory1Size(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI0M1LD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI0M1HD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}

/*
 * pci1GetIOspaceBase - Return PCI1 IO Base Address.
 * Inputs: N/A
 * Returns: PCI1 IO Base Address.
 */

static unsigned int pci1GetIOspaceBase(void)
{
	unsigned int base;
	GT_READ(GT_PCI1IOLD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci1GetIOspaceSize - Return PCI1 IO Bar Size.
 * Inputs: N/A
 * Returns: PCI1 IO Bar Size.
 */

static unsigned int pci1GetIOspaceSize(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI1IOLD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI1IOHD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}

/*
 * pci1GetMemory0Base - Return PCI1 Memory 0 Base Address.
 * Inputs: N/A
 * Returns: PCI1 Memory 0 Base Address.
 */

static unsigned int pci1GetMemory0Base(void)
{
	unsigned int base;
	GT_READ(GT_PCI1M0LD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci1GetMemory0Size - Return PCI1 Memory 0 Bar Size.
 * Inputs: N/A
 * Returns: PCI1 Memory 0 Bar Size.
 */

static unsigned int pci1GetMemory0Size(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI1M1LD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI1M1HD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}

/*
 * pci1GetMemory1Base - Return PCI1 Memory 1 Base Address.
 * Inputs: N/A
 * Returns: PCI1 Memory 1 Base Address.
 */

static unsigned int pci1GetMemory1Base(void)
{
	unsigned int base;
	GT_READ(GT_PCI1M1LD_OFS, &base);
	base = base << 21;
	return base;
}

/*
 * pci1GetMemory1Size - Return PCI1 Memory 1 Bar Size.
 * Inputs: N/A
 * Returns: PCI1 Memory 1 Bar Size.
 */

static unsigned int pci1GetMemory1Size(void)
{
	unsigned int top, base, size;
	GT_READ(GT_PCI1M1LD_OFS, &base);
	base = base << 21;
	GT_READ(GT_PCI1M1HD_OFS, &top);
	top = (top << 21);
	size = ((top - base) & 0xfffffff);
	size = size | 0x1fffff;
	return (size + 1);
}



/*
 * pci_range_ck -
 *
 * Check if the pci device that are trying to access does really exists
 * on the evaluation board.  
 *
 * Inputs :
 * bus - bus number (0 for PCI 0 ; 1 for PCI 1)
 * dev - number of device on the specific pci bus
 *
 * Outpus :
 * 0 - if OK , 1 - if failure
 */
static __inline__ int pci_range_ck(unsigned char bus, unsigned char dev)
{
	//DBG(KERN_INFO "p_r_c %d %d\n",bus,dev);
	if (((bus == 0) || (bus == 1)) && (dev >= 6) && (dev <= 8))
		return 0;	// Bus/Device Number OK
	return -1;		// Bus/Device Number not OK  
}

/*
 * pciXReadConfigReg  - Read from a PCI configuration register
 *                    - Make sure the GT is configured as a master before 
 *                      reading from another device on the PCI.
 *                   - The function takes care of Big/Little endian conversion.
 * INPUTS:   regOffset: The register offset as it apears in the GT spec (or PCI
 *                        spec)
 *           pciDevNum: The device number needs to be addressed.                
 * RETURNS: data , if the data == 0xffffffff check the master abort bit in the 
 *                 cause register to make sure the data is valid
 *
 *  Configuration Address 0xCF8:
 *
 *       31 30    24 23  16 15  11 10     8 7      2  0     <=bit Number
 *  |congif|Reserved|  Bus |Device|Function|Register|00|
 *  |Enable|        |Number|Number| Number | Number |  |    <=field Name
 *
 */
static unsigned int pci0ReadConfigReg(int offset, struct pci_dev *device)
{
	unsigned int DataForRegCf8;
	unsigned int data;

	DataForRegCf8 = ((PCI_SLOT(device->devfn) << 11) |
			 (PCI_FUNC(device->devfn) << 8) |
			 (offset & ~0x3)) | 0x80000000;
	GT_WRITE(GT_PCI0_CFGADDR_OFS, DataForRegCf8);

	/*  The casual observer might wonder why the READ is duplicated here,
	   rather than immediately following the WRITE, and just have the
	   swap in the "if".  That's because there is a latency problem
	   with trying to read immediately after setting up the address
	   register.  The "if" check gives enough time for the address
	   to stabilize, so the READ can work.
	 */
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		GT_READ(GT_PCI0_CFGDATA_OFS, &data);
		return data;
	} else {	/* The PCI is working in LE Mode so swap the Data. */
		GT_READ(GT_PCI0_CFGDATA_OFS, &data);
		return cpu_to_le32(data);
	}
}

static unsigned int pci1ReadConfigReg(int offset, struct pci_dev *device)
{
	unsigned int DataForRegCf8;
	unsigned int data;

	DataForRegCf8 = ((PCI_SLOT(device->devfn) << 11) |
			 (PCI_FUNC(device->devfn) << 8) |
			 (offset & ~0x3)) | 0x80000000;
	/*  The casual observer might wonder why the READ is duplicated here,
	   rather than immediately following the WRITE, and just have the
	   swap in the "if".  That's because there is a latency problem
	   with trying to read immediately after setting up the address
	   register.  The "if" check gives enough time for the address
	   to stabilize, so the READ can work.
	 */
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		/* when configurating our own PCI 1 L-unit the access is through  
		   the PCI 0 interface with reg number = reg number + 0x80 */
		DataForRegCf8 |= 0x80;
		GT_WRITE(GT_PCI0_CFGADDR_OFS, DataForRegCf8);
	} else {		/* The PCI is working in LE Mode so swap the Data. */
		GT_WRITE(GT_PCI1_CFGADDR_OFS, DataForRegCf8);
	}
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		GT_READ(GT_PCI0_CFGDATA_OFS, &data);
		return data;
	} else {
		GT_READ(GT_PCI1_CFGDATA_OFS, &data);
		return cpu_to_le32(data);
	}
}



/*
 * pciXWriteConfigReg - Write to a PCI configuration register
 *                    - Make sure the GT is configured as a master before 
 *                      writingto another device on the PCI.
 *                    - The function takes care of Big/Little endian conversion.
 * Inputs:   unsigned int regOffset: The register offset as it apears in the
 *           GT spec 
 *                   (or any other PCI device spec)
 *           pciDevNum: The device number needs to be addressed.                
 *
 *  Configuration Address 0xCF8:
 *
 *       31 30    24 23  16 15  11 10     8 7      2  0     <=bit Number
 *  |congif|Reserved|  Bus |Device|Function|Register|00|
 *  |Enable|        |Number|Number| Number | Number |  |    <=field Name
 *
 */
static void pci0WriteConfigReg(unsigned int offset,
			       struct pci_dev *device, unsigned int data)
{
	unsigned int DataForRegCf8;

	DataForRegCf8 = ((PCI_SLOT(device->devfn) << 11) |
			 (PCI_FUNC(device->devfn) << 8) |
			 (offset & ~0x3)) | 0x80000000;
	GT_WRITE(GT_PCI0_CFGADDR_OFS, DataForRegCf8);
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		GT_WRITE(GT_PCI0_CFGDATA_OFS, data);
	} else {		/* configuration Transaction over the pci. */
		/* The PCI is working in LE Mode so swap the Data. */
		GT_WRITE(GT_PCI0_CFGDATA_OFS, le32_to_cpu(data));
	}
}

static void pci1WriteConfigReg(unsigned int offset,
			       struct pci_dev *device, unsigned int data)
{
	unsigned int DataForRegCf8;

	DataForRegCf8 = ((PCI_SLOT(device->devfn) << 11) |
			 (PCI_FUNC(device->devfn) << 8) |
			 (offset & ~0x3)) | 0x80000000;
	/*  There is a latency problem
	   with trying to read immediately after setting up the address
	   register.  The "if" check gives enough time for the address
	   to stabilize, so the WRITE can work.
	 */
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		/* when configurating our own PCI 1 L-unit the access is through  
		   the PCI 0 interface with reg number = reg number + 0x80 */
		DataForRegCf8 |= 0x80;
		GT_WRITE(GT_PCI0_CFGADDR_OFS, DataForRegCf8);
	} else {		/* configuration Transaction over the pci. */
		/* The PCI is working in LE Mode so swap the Data. */
		GT_WRITE(GT_PCI1_CFGADDR_OFS, DataForRegCf8);
	}
	if (PCI_SLOT(device->devfn) == SELF) {	/* This board */
		GT_WRITE(GT_PCI0_CFGDATA_OFS, data);
	} else {		/* configuration Transaction over the pci. */
		GT_WRITE(GT_PCI1_CFGADDR_OFS, le32_to_cpu(data));
	}
}


/*
 * galileo_pcibios_(read/write)_config_(dword/word/byte) -
 *
 * reads/write a dword/word/byte register from the configuration space
 * of a device.
 *
 * Inputs :
 * bus - bus number
 * dev - device number
 * offset - register offset in the configuration space
 * val - value to be written / read
 *
 * Outputs :
 * PCIBIOS_SUCCESSFUL when operation was succesfull
 * PCIBIOS_DEVICE_NOT_FOUND when the bus or dev is errorneous
 * PCIBIOS_BAD_REGISTER_NUMBER when accessing non aligned
 */

static int galileo_pcibios_read_config_dword(struct pci_dev *device,
					     int offset, u32 * val)
{
	int dev, bus;
	//DBG(KERN_INFO "rcd entry \n",offset,val);
	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev)) {
		*val = 0xffffffff;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}
	if (offset & 0x3)
		return PCIBIOS_BAD_REGISTER_NUMBER;
	if (bus == 0)
		*val = pci0ReadConfigReg(offset, device);
//  if (bus == 1) *val = pci1ReadConfigReg (offset,device);
	DBG(KERN_INFO "rr: rcd dev %d offset %x %x\n", dev, offset, *val);

	/*
	 * This is so that the upper PCI layer will get the correct return
	 * value if we're not attached to anything.
	 */
	if ((offset == 0) && (*val == 0xffffffff)) {
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	return PCIBIOS_SUCCESSFUL;
}

static int galileo_pcibios_read_config_word(struct pci_dev *device,
					    int offset, u16 * val)
{
	int dev, bus;

	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev)) {
		*val = 0xffff;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}
	if (offset & 0x1)
		return PCIBIOS_BAD_REGISTER_NUMBER;

	if (bus == 0)
		*val = (unsigned short) (pci0ReadConfigReg(offset, device) >>
				         ((offset & ~0x3) * 8));
//  if (bus == 1) *val = (unsigned short) (pci1ReadConfigReg(offset,device) >> ((offset & ~0x3) * 8));

	DBG(KERN_INFO "rr: rcw dev %d offset %x %x\n", dev, offset, *val);

	return PCIBIOS_SUCCESSFUL;
}

static int galileo_pcibios_read_config_byte(struct pci_dev *device,
					    int offset, u8 * val)
{
	int dev, bus;

	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev)) {
		*val = 0xff;
		return PCIBIOS_DEVICE_NOT_FOUND;
	}

	if (bus == 0)
		*val =
		    (unsigned char) (pci0ReadConfigReg(offset, device) >>
				     ((offset & ~0x3) * 8));
//  if (bus == 1) *val = (unsigned char) (pci1ReadConfigReg(offset,device) >> ((offset & ~0x3) * 8));

	DBG(KERN_INFO "rr: rcb dev %d offset %x %x\n", dev, offset, *val);

	/*  This is so that the upper PCI layer will get the correct return value if
	   we're not attached to anything.  */
	if ((offset == 0xe) && (*val == 0xff)) {
		u32 MasterAbort;
		GT_READ(GT_INTRCAUSE_OFS, &MasterAbort);
		if (MasterAbort & 0x40000) {
			DBG(KERN_INFO "PCI Master Abort, ICR %x\n",
			    MasterAbort);
			GT_WRITE(GT_INTRCAUSE_OFS,
				 (MasterAbort & 0xfffbffff));
			return PCIBIOS_DEVICE_NOT_FOUND;
		}
	}

	return PCIBIOS_SUCCESSFUL;
}

static int galileo_pcibios_write_config_dword(struct pci_dev *device,
					      int offset, u32 val)
{
	int dev, bus;

	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev))
		return PCIBIOS_DEVICE_NOT_FOUND;
	if (offset & 0x3)
		return PCIBIOS_BAD_REGISTER_NUMBER;
	if (bus == 0)
		pci0WriteConfigReg(offset, device, val);
//  if (bus == 1) pci1WriteConfigReg (offset,device,val);

	DBG(KERN_INFO "rr: wcd dev %d, offset %x, val %x\n", dev, offset,
	    val);
	return PCIBIOS_SUCCESSFUL;
}


static int galileo_pcibios_write_config_word(struct pci_dev *device,
					     int offset, u16 val)
{
	int dev, bus;
	unsigned long tmp;

	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev))
		return PCIBIOS_DEVICE_NOT_FOUND;
	if (offset & 0x1)
		return PCIBIOS_BAD_REGISTER_NUMBER;
	if (bus == 0)
		tmp = pci0ReadConfigReg(offset, device);
//  if (bus == 1) tmp = pci1ReadConfigReg (offset,device);

	if ((offset % 4) == 0)
		tmp = (tmp & 0xffff0000) | (val & 0xffff);
	if ((offset % 4) == 2)
		tmp = (tmp & 0x0000ffff) | ((val & 0xffff) << 16);

	if (bus == 0)
		pci0WriteConfigReg(offset, device, tmp);
//  if (bus == 1) pci1WriteConfigReg (offset,device,tmp);
	DBG(KERN_INFO "rr: wcw dev %d, offset %x, val %x\n", dev, offset,
	    val);
	return PCIBIOS_SUCCESSFUL;
}

static int galileo_pcibios_write_config_byte(struct pci_dev *device,
					     int offset, u8 val)
{
	int dev, bus;
	unsigned long tmp;

	bus = device->bus->number;
	dev = PCI_SLOT(device->devfn);

	if (pci_range_ck(bus, dev))
		return PCIBIOS_DEVICE_NOT_FOUND;
	if (bus == 0)
		tmp = pci0ReadConfigReg(offset, device);
//  if (bus == 1) tmp = pci1ReadConfigReg (offset,device);

	if ((offset % 4) == 0)
		tmp = (tmp & 0xffffff00) | (val & 0xff);
	if ((offset % 4) == 1)
		tmp = (tmp & 0xffff00ff) | ((val & 0xff) << 8);
	if ((offset % 4) == 2)
		tmp = (tmp & 0xff00ffff) | ((val & 0xff) << 16);
	if ((offset % 4) == 3)
		tmp = (tmp & 0x00ffffff) | ((val & 0xff) << 24);

	if (bus == 0)
		pci0WriteConfigReg(offset, device, tmp);
//  if (bus == 1) pci1WriteConfigReg (offset,device,tmp);
	DBG(KERN_INFO "rr: wcb dev %d, offset %x, val %x\n", dev, offset,
	    val);

	return PCIBIOS_SUCCESSFUL;
}

static void galileo_pcibios_set_master(struct pci_dev *dev)
{
	u16 cmd;

	DBG(KERN_INFO "rr: galileo_pcibios_set_master\n");

	galileo_pcibios_read_config_word(dev, PCI_COMMAND, &cmd);
	cmd |= PCI_COMMAND_MASTER;
	galileo_pcibios_write_config_word(dev, PCI_COMMAND, cmd);
	DBG("PCI: Enabling device %s (%04x)\n", dev->slot_name, cmd);
}

/*  Externally-expected functions.  Do not change function names  */

int pcibios_enable_resources(struct pci_dev *dev)
{
	u16 cmd, old_cmd;
	u16 tmp;
	u8 tmp1;
	int idx;
	struct resource *r;

	DBG(KERN_INFO "rr: pcibios_enable_resources\n");

	galileo_pcibios_read_config_word(dev, PCI_COMMAND, &cmd);
	old_cmd = cmd;
	for (idx = 0; idx < 6; idx++) {
		r = &dev->resource[idx];
		DBG(KERN_INFO
		    "rr: BAR %d, start %lx, end %lx, flags %lx\n", idx,
		    r->start, r->end, r->flags);
		if (!r->start && r->end) {
			printk(KERN_ERR
			       "PCI: Device %s not available because of resource collisions\n",
			       dev->slot_name);
			return -EINVAL;
		}
		if (r->flags & IORESOURCE_IO)
			cmd |= PCI_COMMAND_IO;
		if (r->flags & IORESOURCE_MEM)
			cmd |= PCI_COMMAND_MEMORY;
	}
	if (cmd != old_cmd) {
		DBG(KERN_INFO "PCI: Enabling device %s (%04x -> %04x)\n",
		    dev->slot_name, old_cmd, cmd);
		galileo_pcibios_write_config_word(dev, PCI_COMMAND, cmd);
	}

	/*
	   Let's fix up the latency timer and cache line size here.  Cache line size =
	   32 bytes / sizeof dword (4) = 8.
	   Latency timer must be > 8.  32 is random but appears to work.
	 */
	galileo_pcibios_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &tmp1);
	if (tmp1 != 8) {
		DBG(KERN_INFO
		    "rr: PCI setting cache line size to 8 from %d\n",
		    tmp1);
		galileo_pcibios_write_config_byte(dev, PCI_CACHE_LINE_SIZE,
						  8);
	}
	galileo_pcibios_read_config_byte(dev, PCI_LATENCY_TIMER, &tmp1);
	if (tmp1 < 32) {
		DBG(KERN_INFO
		    "rr: PCI setting latency timer to 32 from %d\n", tmp1);
		galileo_pcibios_write_config_byte(dev, PCI_LATENCY_TIMER,
						  32);
	}

	return 0;
}

int pcibios_enable_device(struct pci_dev *dev)
{
	DBG(KERN_INFO "rr: pcibios_enable_device\n");
	return pcibios_enable_resources(dev);
}

void pcibios_update_resource(struct pci_dev *dev, struct resource *root,
			     struct resource *res, int resource)
{
	u32 new, check;
	int reg;

	DBG(KERN_INFO "rr: pcibios_update_resource\n");
	return;

	new = res->start | (res->flags & PCI_REGION_FLAG_MASK);
	if (resource < 6) {
		reg = PCI_BASE_ADDRESS_0 + 4 * resource;
	} else if (resource == PCI_ROM_RESOURCE) {
		res->flags |= PCI_ROM_ADDRESS_ENABLE;
		reg = dev->rom_base_reg;
	} else {
		/* Somebody might have asked allocation of a non-standard resource */
		return;
	}

	pci_write_config_dword(dev, reg, new);
	pci_read_config_dword(dev, reg, &check);
	if ((new ^ check) &
	    ((new & PCI_BASE_ADDRESS_SPACE_IO) ? PCI_BASE_ADDRESS_IO_MASK :
	     PCI_BASE_ADDRESS_MEM_MASK)) {
		DBG(KERN_ERR "PCI: Error while updating region "
		    "%s/%d (%08x != %08x)\n", dev->slot_name, resource,
		    new, check);
	}
}

void pcibios_align_resource(void *data, struct resource *res,
			    unsigned long size)
{
	struct pci_dev *dev = data;

	DBG(KERN_INFO "pcibios_align_resource\n");

	if (res->flags & IORESOURCE_IO) {
		unsigned long start = res->start;

		/* We need to avoid collisions with `mirrored' VGA ports
		   and other strange ISA hardware, so we always want the
		   addresses kilobyte aligned.  */
		if (size > 0x100) {
			DBG(KERN_ERR "PCI: I/O Region %s/%d too large"
			    " (%ld bytes)\n", dev->slot_name,
			    dev->resource - res, size);
		}

		start = (start + 1024 - 1) & ~(1024 - 1);
		res->start = start;
	}
}

/*
 * structure galileo_pci_ops
 *
 * This structure holds the pointers for the PCI configuration space
 * access, and the fixup for the interrupts.
 * This structure is registered to the operating system in boot time
 */
struct pci_ops galileo_pci_ops = {
	galileo_pcibios_read_config_byte,
	galileo_pcibios_read_config_word,
	galileo_pcibios_read_config_dword,
	galileo_pcibios_write_config_byte,
	galileo_pcibios_write_config_word,
	galileo_pcibios_write_config_dword
};

/*
 * galileo_pcibios_fixup_bus -
 *
 * After detecting all agents over the PCI , this function is called
 * in order to give an interrupt number for each PCI device starting
 * from IRQ 20. It does also enables master for each device.
 *
 * Inputs :
 * mem_start , mem_end are not relevant in MIPS architecture.
 *
 * Outpus :
 * return always mem_start
 */
static void __init galileo_pcibios_fixup_bus(struct pci_bus *bus)
{
	unsigned int Current_IRQ = 20;
	struct pci_bus *current_bus = bus;
	struct pci_dev *devices;
	struct list_head *devices_link;

	list_for_each(devices_link, &(current_bus->devices)) {
		devices = pci_dev_b(devices_link);
		if (devices != NULL) {
			devices->irq = Current_IRQ++;

			/* Assign an interrupt number for the device */
			galileo_pcibios_write_config_byte(devices,
							  PCI_INTERRUPT_LINE,
							  Current_IRQ);
			galileo_pcibios_set_master(devices);

		}
	}

}

struct pci_fixup pcibios_fixups[] = {
//    { PCI_FIXUP_HEADER, 0x4620, 0x11ab, galileo_pcibios_fixup },
	{0}
};

void __init pcibios_fixup_bus(struct pci_bus *c)
{
	DBG(KERN_INFO "rr: pcibios_fixup_bus\n");
	galileo_pcibios_fixup_bus(c);
}

/*
 * This code was derived from Galileo Technology's example
 * and significantly reworked.
 *
 * This is very simple.  It does not scan multiple function devices.  It does
 * not scan behind bridges.  Those would be simple to implement, but we don't
 * currently need this.
 */
static void __init scan_and_initialize_pci(void)
{
	struct pci_device pci_devices[MAX_PCI_DEVS];

	if (scan_pci_bus(pci_devices)) {
		allocate_pci_space(pci_devices);
	}
}

/*
 * This is your basic PCI scan.  It goes through each slot and checks to
 * see if there's something that responds.  If so, then get the size and
 * type of each of the responding BARs.  Save them for later.
 */

static u32 __init scan_pci_bus(struct pci_device *pci_devices)
{
	u32 arrayCounter = 0;
	u32 memType;
	u32 memSize;
	u32 pci_slot, bar;
	u32 id;
	u32 c18RegValue;
	struct pci_dev device;

	DBG(KERN_INFO "rr: scan_pci_bus\n");

	/*
	   According to PCI REV 2.1 MAX agents on the bus are 21.
	   We don't bother scanning ourselves (slot 0).
	 */
	for (pci_slot = 1; pci_slot < 22; pci_slot++) {

		device.devfn = PCI_DEVFN(pci_slot, 0);
		id = pci0ReadConfigReg(PCI_VENDOR_ID, &device);

		/*  Check for a PCI Master Abort (nothing responds in the slot) */
		GT_READ(GT_INTRCAUSE_OFS, &c18RegValue);
		/* Clearing bit 18 of in the Cause Register 0xc18 by writting 0. */
		GT_WRITE(GT_INTRCAUSE_OFS, (c18RegValue & 0xfffbffff));
		if ((id != 0xffffffff) && !(c18RegValue & 0x40000)) {
			DBG(KERN_INFO "rr: found device %x, slot %d\n", id,
			    pci_slot);
			pci_devices[arrayCounter].slot = pci_slot;
			for (bar = 0; bar < 6; bar++) {
				memType =
				    pci0ReadConfigReg(PCI_BASE_ADDRESS_0 +
						      (bar * 4), &device);
				pci_devices[arrayCounter].BARtype[bar] =
				    memType & 1;
				pci0WriteConfigReg(PCI_BASE_ADDRESS_0 +
						   (bar * 4), &device,
						   0xffffffff);
				memSize =
				    pci0ReadConfigReg(PCI_BASE_ADDRESS_0 +
						      (bar * 4), &device);
				if (memType & 1) {	/*  IO space  */
					pci_devices[arrayCounter].
					    BARsize[bar] =
					    ~(memSize & 0xfffffffc) + 1;
				} else {	/*  memory space */
					pci_devices[arrayCounter].
					    BARsize[bar] =
					    ~(memSize & 0xfffffff0) + 1;
				}
				DBG(KERN_INFO
				    "rr: BAR %d, type %d, size %x\n", bar,
				    (memType & 1),
				    pci_devices[arrayCounter].
				    BARsize[bar]);
			}	/*  BAR counter  */

			arrayCounter++;
		}
		/*  found a device  */
	}			/*  slot counter  */

	DBG(KERN_INFO "rr: found %d devices\n", arrayCounter);
	if (arrayCounter < MAX_PCI_DEVS) {
		pci_devices[arrayCounter].slot = -1;
	}
	return (arrayCounter);
}

#define ALIGN(val,align)        (((val) + ((align) - 1)) & ~((align) - 1))
#define MAX(val1, val2) ((val1) > (val2) ? (val1) : (val2))

/*
 * This function goes through the list of devices and allocates the BARs in
 * either IO or MEM space.  It does it in order of size, which will limit the
 * amount of fragmentation we have in the IO and MEM spaces.
 */

static void __init allocate_pci_space(struct pci_device *pci_devices)
{
	u32 count, maxcount, bar;
	u32 maxSize, maxDevice, maxBAR;
	u32 alignto;
	u32 base;
	u32 pci0_mem_base = pci0GetMemory0Base();
	u32 pci0_io_base = pci0GetIOspaceBase();
	struct pci_dev device;

	DBG(KERN_INFO "rr: allocate_pci_space\n");

	DBG(KERN_INFO "pci0_io_base %x\n", pci0_io_base);
	DBG(KERN_INFO "pci0_mem_base %x\n", pci0_mem_base);

	/*  How many PCI devices do we have?  */
	maxcount = MAX_PCI_DEVS;
	for (count = 0; count < MAX_PCI_DEVS; count++) {
		if (pci_devices[count].slot == -1) {
			maxcount = count;
			break;
		}
	}

//    DBG(KERN_INFO "Found %d devices\n", maxcount);

	do {
		/*  Find the largest size BAR we need to allocate  */
		maxSize = 0;
		for (count = 0; count < maxcount; count++) {
			for (bar = 0; bar < 6; bar++) {
				if (pci_devices[count].BARsize[bar] >
				    maxSize) {
					maxSize =
					    pci_devices[count].
					    BARsize[bar];
					maxDevice = count;
					maxBAR = bar;
				}
			}
		}

		/*
		   We've found the largest BAR.  Allocate it into IO or
		   mem space.  We don't idiot check the bases to make
		   sure they haven't overflowed the current size for that aperture.

		   Don't bother to enable the device's IO or MEM space here.  That will
		   be done in pci_enable_resources if the device is activated by a driver.
		 */
		if (maxSize) {
			device.devfn =
			    PCI_DEVFN(pci_devices[maxDevice].slot, 0);
			if (pci_devices[maxDevice].BARtype[maxBAR] == 1) {
				alignto = MAX(0x1000, maxSize);
				base = ALIGN(pci0_io_base, alignto);
				pci0WriteConfigReg(PCI_BASE_ADDRESS_0 +
						   (maxBAR * 4), &device,
						   base | 0x1);
				pci0_io_base = base + alignto;
				DBG(KERN_INFO
				    "Device %d BAR %d address %x\n",
				    pci_devices[maxDevice].slot, maxBAR,
				    base);
				DBG(KERN_INFO "New IO base %x\n",
				    pci0_io_base);
			} else {
				alignto = MAX(0x1000, maxSize);
				base = ALIGN(pci0_mem_base, alignto);
				pci0WriteConfigReg(PCI_BASE_ADDRESS_0 +
						   (maxBAR * 4), &device,
						   base);
				pci0_mem_base = base + alignto;
				DBG(KERN_INFO
				    "Device %d BAR %d address %x\n",
				    pci_devices[maxDevice].slot, maxBAR,
				    base);
				DBG(KERN_INFO "New mem base %x\n",
				    pci0_mem_base);
			}
			/*
			   This entry is finished.  Remove it from the list we'll scan.
			 */
			pci_devices[maxDevice].BARsize[maxBAR] = 0;
		}
	} while (maxSize);
}

void __init pcibios_init(void)
{

	u32 tmp;
	struct pci_dev controller;

	controller.devfn = SELF;

	DBG(KERN_INFO "rr: pcibios_init\n");
	GT_READ(GT_PCI0_CMD_OFS, &tmp);
	DBG(KERN_INFO "rr: PCI0 command - %x\n", tmp);
	GT_READ(GT_PCI0_BARE_OFS, &tmp);
	DBG(KERN_INFO "rr: BAR0 - %x\n", tmp);

	/*
	 * You have to enable bus mastering to configure any other
	 * card on the bus.
	 */
	tmp = pci0ReadConfigReg(PCI_COMMAND, &controller);
	DBG(KERN_INFO "rr: command/status - %x\n", tmp);
	tmp |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_SERR;
	DBG(KERN_INFO "rr: new command/status - %x\n", tmp);
	pci0WriteConfigReg(PCI_COMMAND, &controller, tmp);

	/*  This scans the PCI bus and sets up initial values.  */
	scan_and_initialize_pci();

	/*
	 * Reset PCI I/O and PCI MEM values to ones supported by EVM.
	 */
	ioport_resource.start = 0x10000000;
	ioport_resource.end = 0x11ffffff;	/*  32 MB */
	iomem_resource.start = 0x12000000;
	iomem_resource.end = 0x13ffffff;	/* 32 MB */

	pci_scan_bus(0, &galileo_pci_ops, NULL);

}

char *pcibios_setup(char *str)
{
	printk(KERN_INFO "rr: pcibios_setup\n");
	/* Nothing to do for now.  */

	return str;
}

#endif /* CONFIG_PCI */