summaryrefslogtreecommitdiffstats
path: root/arch/ppc/kernel/time.c
blob: 8bada0e6961ae57e3bd4c71f8a276fc5426b08d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/*
 * $Id: time.c,v 1.36 1998/10/10 12:16:08 geert Exp $
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 *
 * Since the MPC8xx has a programmable interrupt timer, I decided to
 * use that rather than the decrementer.  Two reasons: 1.) the clock
 * frequency is low, causing 2.) a long wait in the timer interrupt
 *		while ((d = get_dec()) == dval)
 * loop.  The MPC8xx can be driven from a variety of input clocks,
 * so a number of assumptions have been made here because the kernel
 * parameter HZ is a constant.  We assume (correctly, today :-) that
 * the MPC8xx on the MBX board is driven from a 32.768 kHz crystal.
 * This is then divided by 4, providing a 8192 Hz clock into the PIT.
 * Since it is not possible to get a nice 100 Hz clock out of this, without
 * creating a software PLL, I have set HZ to 128.  -- Dan
 */

#include <linux/config.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <linux/init.h>

#include <asm/segment.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#ifdef CONFIG_MBX
#include <asm/mbx.h>
#endif
#ifdef CONFIG_8xx
#include <asm/8xx_immap.h>
#endif

#include "time.h"

/* this is set to the appropriate pmac/prep/chrp func in init_IRQ() */
int (*set_rtc_time)(unsigned long);

void smp_local_timer_interrupt(struct pt_regs *);

/* keep track of when we need to update the rtc */
unsigned long last_rtc_update = 0;

/* The decrementer counts down by 128 every 128ns on a 601. */
#define DECREMENTER_COUNT_601	(1000000000 / HZ)
#define COUNT_PERIOD_NUM_601	1
#define COUNT_PERIOD_DEN_601	1000

unsigned decrementer_count;	/* count value for 1e6/HZ microseconds */
unsigned count_period_num;	/* 1 decrementer count equals */
unsigned count_period_den;	/* count_period_num / count_period_den us */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 * We set it up to overflow again in 1/HZ seconds.
 */
void timer_interrupt(struct pt_regs * regs)
{
	int dval, d;
	unsigned long cpu = smp_processor_id();
	/* save the HID0 in case dcache was off - see idle.c
	 * this hack should leave for a better solution -- Cort */
	unsigned dcache_locked = unlock_dcache();
	
	hardirq_enter(cpu);
	
	while ((dval = get_dec()) < 0) {
		/*
		 * Wait for the decrementer to change, then jump
		 * in and add decrementer_count to its value
		 * (quickly, before it changes again!)
		 */
		while ((d = get_dec()) == dval)
			;
		set_dec(d + decrementer_count);
		if ( !smp_processor_id() )
		{
			do_timer(regs);
			/*
			 * update the rtc when needed
			 */
			if ( xtime.tv_sec > last_rtc_update + 660 )
			{
				if (set_rtc_time(xtime.tv_sec) == 0)
					last_rtc_update = xtime.tv_sec;
				else
					last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
			}
		}
	}
#ifdef __SMP__
	smp_local_timer_interrupt(regs);
#endif		
#ifdef CONFIG_APUS
	{
		extern void apus_heartbeat (void);
		apus_heartbeat ();
	}
#endif
	hardirq_exit(cpu);
	/* restore the HID0 in case dcache was off - see idle.c
	 * this hack should leave for a better solution -- Cort */
	lock_dcache(dcache_locked);
}

#ifdef CONFIG_MBX
/* A place holder for time base interrupts, if they are ever enabled.
*/
void timebase_interrupt(int irq, void * dev, struct pt_regs * regs)
{
	printk("timebase_interrupt()\n");
}

/* The RTC on the MPC8xx is an internal register.
 * We want to protect this during power down, so we need to unlock,
 * modify, and re-lock.
 */
static int
mbx_set_rtc_time(unsigned long time)
{
	((immap_t *)MBX_IMAP_ADDR)->im_sitk.sitk_rtck = KAPWR_KEY;
	((immap_t *)MBX_IMAP_ADDR)->im_sit.sit_rtc = time;
	((immap_t *)MBX_IMAP_ADDR)->im_sitk.sitk_rtck = ~KAPWR_KEY;
	return(0);
}
#endif /* CONFIG_MBX */

/*
 * This version of gettimeofday has microsecond resolution.
 */
void do_gettimeofday(struct timeval *tv)
{
	unsigned long flags;

	save_flags(flags);
	cli();
	*tv = xtime;
	tv->tv_usec += (decrementer_count - get_dec())
	    * count_period_num / count_period_den;
	if (tv->tv_usec >= 1000000) {
		tv->tv_usec -= 1000000;
		tv->tv_sec++;
	}
	restore_flags(flags);
}

void do_settimeofday(struct timeval *tv)
{
	unsigned long flags;
	int frac_tick;
	
	last_rtc_update = 0; /* so the rtc gets updated soon */
	
	frac_tick = tv->tv_usec % (1000000 / HZ);
	save_flags(flags);
	cli();
	xtime.tv_sec = tv->tv_sec;
	xtime.tv_usec = tv->tv_usec - frac_tick;
	set_dec(frac_tick * count_period_den / count_period_num);
	restore_flags(flags);
}


__initfunc(void time_init(void))
{
#ifndef CONFIG_MBX
	if ((_get_PVR() >> 16) == 1) {
		/* 601 processor: dec counts down by 128 every 128ns */
		decrementer_count = DECREMENTER_COUNT_601;
		count_period_num = COUNT_PERIOD_NUM_601;
		count_period_den = COUNT_PERIOD_DEN_601;
	}

	switch (_machine) {
	case _MACH_Pmac:
		xtime.tv_sec = pmac_get_rtc_time();
		if ( (_get_PVR() >> 16) != 1 && (!smp_processor_id()) )
			pmac_calibrate_decr();
		if ( !smp_processor_id() )
			set_rtc_time = pmac_set_rtc_time;
		break;
	case _MACH_chrp:
		chrp_time_init();
		xtime.tv_sec = chrp_get_rtc_time();
		if ((_get_PVR() >> 16) != 1)
			chrp_calibrate_decr();
		set_rtc_time = chrp_set_rtc_time;
		break;
	case _MACH_prep:
		xtime.tv_sec = prep_get_rtc_time();
		prep_calibrate_decr();
		set_rtc_time = prep_set_rtc_time;
		break;
#ifdef CONFIG_APUS		
	case _MACH_apus:
	{
		xtime.tv_sec = apus_get_rtc_time();
		apus_calibrate_decr();
		set_rtc_time = apus_set_rtc_time;
 		break;
	}
#endif	
	}
	xtime.tv_usec = 0;
#else /* CONFIG_MBX */
	mbx_calibrate_decr();
	set_rtc_time = mbx_set_rtc_time;

	/* First, unlock all of the registers we are going to modify.
	 * To protect them from corruption during power down, registers
	 * that are maintained by keep alive power are "locked".  To
	 * modify these registers we have to write the key value to
	 * the key location associated with the register.
	 */
	((immap_t *)MBX_IMAP_ADDR)->im_sitk.sitk_tbscrk = KAPWR_KEY;
	((immap_t *)MBX_IMAP_ADDR)->im_sitk.sitk_rtcsck = KAPWR_KEY;


	/* Disable the RTC one second and alarm interrupts.
	*/
	((immap_t *)MBX_IMAP_ADDR)->im_sit.sit_rtcsc &=
						~(RTCSC_SIE | RTCSC_ALE);

	/* Enabling the decrementer also enables the timebase interrupts
	 * (or from the other point of view, to get decrementer interrupts
	 * we have to enable the timebase).  The decrementer interrupt
	 * is wired into the vector table, nothing to do here for that.
	 */
	((immap_t *)MBX_IMAP_ADDR)->im_sit.sit_tbscr =
				((mk_int_int_mask(DEC_INTERRUPT) << 8) |
					 (TBSCR_TBF | TBSCR_TBE));
	if (request_irq(DEC_INTERRUPT, timebase_interrupt, 0, "tbint", NULL) != 0)
		panic("Could not allocate timer IRQ!");

	/* Get time from the RTC.
	*/
	xtime.tv_sec = ((immap_t *)MBX_IMAP_ADDR)->im_sit.sit_rtc;
	xtime.tv_usec = 0;

#endif /* CONFIG_MBX */
	set_dec(decrementer_count);
	/* mark the rtc/on-chip timer as in sync
	 * so we don't update right away
	 */
	last_rtc_update = xtime.tv_sec;
}

#ifndef CONFIG_MBX
/*
 * Uses the on-board timer to calibrate the on-chip decrementer register
 * for prep systems.  On the pmac the OF tells us what the frequency is
 * but on prep we have to figure it out.
 * -- Cort
 */
int calibrate_done = 0;
volatile int *done_ptr = &calibrate_done;
__initfunc(void prep_calibrate_decr(void))
{
	unsigned long flags;

	/* the Powerstack II's have trouble with the timer so
	 * we use a default value -- Cort
	 */
	if ( (_prep_type == _PREP_Motorola) &&
	     ((inb(0x800) & 0xF0) & 0x40) )
	{
		unsigned long freq, divisor;
		static unsigned long t2 = 0;
		
		t2 = 998700000/60;
		freq = t2 * 60;	/* try to make freq/1e6 an integer */
		divisor = 60;
		printk("time_init: decrementer frequency = %lu/%lu (%luMHz)\n",
		       freq, divisor,t2>>20);
		decrementer_count = freq / HZ / divisor;
		count_period_num = divisor;
		count_period_den = freq / 1000000;
		return;
	}
	
	
	save_flags(flags);

#define TIMER0_COUNT 0x40
#define TIMER_CONTROL 0x43
	/* set timer to periodic mode */
	outb_p(0x34,TIMER_CONTROL);/* binary, mode 2, LSB/MSB, ch 0 */
	/* set the clock to ~100 Hz */
	outb_p(LATCH & 0xff , TIMER0_COUNT);	/* LSB */
	outb(LATCH >> 8 , TIMER0_COUNT);	/* MSB */
	
	if (request_irq(0, prep_calibrate_decr_handler, 0, "timer", NULL) != 0)
		panic("Could not allocate timer IRQ!");
	__sti();
	while ( ! *done_ptr ) /* nothing */; /* wait for calibrate */
        restore_flags(flags);
	free_irq( 0, NULL);
}

__initfunc(void prep_calibrate_decr_handler(int irq, void *dev, struct pt_regs * regs))
{
	unsigned long freq, divisor;
	static unsigned long t1 = 0, t2 = 0;
	
	if ( !t1 )
		t1 = get_dec();
	else if (!t2)
	{
		t2 = get_dec();
		t2 = t1-t2;  /* decr's in 1/HZ */
		t2 = t2*HZ;  /* # decrs in 1s - thus in Hz */
		freq = t2 * 60;	/* try to make freq/1e6 an integer */
		divisor = 60;
		printk("time_init: decrementer frequency = %lu/%lu (%luMHz)\n",
		       freq, divisor,t2>>20);
		decrementer_count = freq / HZ / divisor;
		count_period_num = divisor;
		count_period_den = freq / 1000000;
		*done_ptr = 1;
	}
}

#else /* CONFIG_MBX */

/* The decrementer counts at the system (internal) clock frequency divided by
 * sixteen, or external oscillator divided by four.  Currently, we only
 * support the MBX, which is system clock divided by sixteen.
 */
__initfunc(void mbx_calibrate_decr(void))
{
	bd_t	*binfo = (bd_t *)&res;
	int freq, fp, divisor;

	if ((((immap_t *)MBX_IMAP_ADDR)->im_clkrst.car_sccr & 0x02000000) == 0)
		printk("WARNING: Wrong decrementer source clock.\n");

	/* The manual says the frequency is in Hz, but it is really
	 * as MHz.  The value 'fp' is the number of decrementer ticks
	 * per second.
	 */
	fp = (binfo->bi_intfreq * 1000000) / 16;
	freq = fp*60;	/* try to make freq/1e6 an integer */
        divisor = 60;
        printk("time_init: decrementer frequency = %d/%d\n", freq, divisor);
        decrementer_count = freq / HZ / divisor;
        count_period_num = divisor;
        count_period_den = freq / 1000000;
}
#endif /* CONFIG_MBX */

/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
 *
 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
 * machines were long is 32-bit! (However, as time_t is signed, we
 * will already get problems at other places on 2038-01-19 03:14:08)
 */
unsigned long mktime(unsigned int year, unsigned int mon,
		     unsigned int day, unsigned int hour,
		     unsigned int min, unsigned int sec)
{
	
	if (0 >= (int) (mon -= 2)) {	/* 1..12 -> 11,12,1..10 */
		mon += 12;	/* Puts Feb last since it has leap day */
		year -= 1;
	}
	return (((
		(unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) +
		year*365 - 719499
		)*24 + hour /* now have hours */
		)*60 + min /* now have minutes */
		)*60 + sec; /* finally seconds */
}

#define TICK_SIZE tick
#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
#define	leapyear(year)		((year) % 4 == 0)
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;
}