1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
/*
* $Id: time.c,v 1.57 1999/10/21 03:08:16 cort Exp $
* Common time routines among all ppc machines.
*
* Written by Cort Dougan (cort@cs.nmt.edu) to merge
* Paul Mackerras' version and mine for PReP and Pmac.
* MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
*
* Since the MPC8xx has a programmable interrupt timer, I decided to
* use that rather than the decrementer. Two reasons: 1.) the clock
* frequency is low, causing 2.) a long wait in the timer interrupt
* while ((d = get_dec()) == dval)
* loop. The MPC8xx can be driven from a variety of input clocks,
* so a number of assumptions have been made here because the kernel
* parameter HZ is a constant. We assume (correctly, today :-) that
* the MPC8xx on the MBX board is driven from a 32.768 kHz crystal.
* This is then divided by 4, providing a 8192 Hz clock into the PIT.
* Since it is not possible to get a nice 100 Hz clock out of this, without
* creating a software PLL, I have set HZ to 128. -- Dan
*
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
*/
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <linux/init.h>
#include <asm/segment.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
/* Fixme - Why is this here? - Corey */
#ifdef CONFIG_8xx
#include <asm/8xx_immap.h>
#endif
#include <asm/machdep.h>
#include "time.h"
void smp_local_timer_interrupt(struct pt_regs *);
/* keep track of when we need to update the rtc */
time_t last_rtc_update = 0;
/* The decrementer counts down by 128 every 128ns on a 601. */
#define DECREMENTER_COUNT_601 (1000000000 / HZ)
#define COUNT_PERIOD_NUM_601 1
#define COUNT_PERIOD_DEN_601 1000
unsigned decrementer_count; /* count value for 1e6/HZ microseconds */
unsigned count_period_num; /* 1 decrementer count equals */
unsigned count_period_den; /* count_period_num / count_period_den us */
/*
* timer_interrupt - gets called when the decrementer overflows,
* with interrupts disabled.
* We set it up to overflow again in 1/HZ seconds.
*/
int timer_interrupt(struct pt_regs * regs)
{
int dval, d;
unsigned long cpu = smp_processor_id();
hardirq_enter(cpu);
#ifdef CONFIG_SMP
{
unsigned int loops = 100000000;
while (test_bit(0, &global_irq_lock)) {
if (smp_processor_id() == global_irq_holder) {
printk("uh oh, interrupt while we hold global irq lock!\n");
#ifdef CONFIG_XMON
xmon(0);
#endif
break;
}
if (loops-- == 0) {
printk("do_IRQ waiting for irq lock (holder=%d)\n", global_irq_holder);
#ifdef CONFIG_XMON
xmon(0);
#endif
}
}
}
#endif /* CONFIG_SMP */
dval = get_dec();
/*
* Wait for the decrementer to change, then jump
* in and add decrementer_count to its value
* (quickly, before it changes again!)
*/
while ((d = get_dec()) == dval)
;
/*
* Don't play catchup between the call to time_init()
* and sti() in init/main.c.
*
* This also means if we're delayed for > HZ
* we lose those ticks. If we're delayed for > HZ
* then we have something wrong anyway, though.
*
* -- Cort
*/
if ( d < (-1*decrementer_count) )
d = 0;
set_dec(d + decrementer_count);
if ( !smp_processor_id() )
{
do_timer(regs);
/*
* update the rtc when needed
*/
if ( (time_status & STA_UNSYNC) &&
((xtime.tv_sec > last_rtc_update + 60) ||
(xtime.tv_sec < last_rtc_update)) )
{
if (ppc_md.set_rtc_time(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
/* do it again in 60 s */
last_rtc_update = xtime.tv_sec;
}
}
#ifdef CONFIG_SMP
smp_local_timer_interrupt(regs);
#endif
if ( ppc_md.heartbeat && !ppc_md.heartbeat_count--)
ppc_md.heartbeat();
hardirq_exit(cpu);
return 1; /* lets ret_from_int know we can do checks */
}
/*
* This version of gettimeofday has microsecond resolution.
*/
void do_gettimeofday(struct timeval *tv)
{
unsigned long flags;
save_flags(flags);
cli();
*tv = xtime;
/* XXX we don't seem to have the decrementers synced properly yet */
#ifndef CONFIG_SMP
tv->tv_usec += (decrementer_count - get_dec())
* count_period_num / count_period_den;
if (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
#endif
restore_flags(flags);
}
void do_settimeofday(struct timeval *tv)
{
unsigned long flags;
int frac_tick;
last_rtc_update = 0; /* so the rtc gets updated soon */
frac_tick = tv->tv_usec % (1000000 / HZ);
save_flags(flags);
cli();
xtime.tv_sec = tv->tv_sec;
xtime.tv_usec = tv->tv_usec - frac_tick;
set_dec(frac_tick * count_period_den / count_period_num);
time_adjust = 0; /* stop active adjtime() */
time_status |= STA_UNSYNC;
time_state = TIME_ERROR; /* p. 24, (a) */
time_maxerror = NTP_PHASE_LIMIT;
time_esterror = NTP_PHASE_LIMIT;
restore_flags(flags);
}
void __init time_init(void)
{
if (ppc_md.time_init != NULL)
{
ppc_md.time_init();
}
if ((_get_PVR() >> 16) == 1) {
/* 601 processor: dec counts down by 128 every 128ns */
decrementer_count = DECREMENTER_COUNT_601;
count_period_num = COUNT_PERIOD_NUM_601;
count_period_den = COUNT_PERIOD_DEN_601;
} else if (!smp_processor_id()) {
ppc_md.calibrate_decr();
}
xtime.tv_sec = ppc_md.get_rtc_time();
xtime.tv_usec = 0;
set_dec(decrementer_count);
/* allow setting the time right away */
last_rtc_update = 0;
}
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
*
* [For the Julian calendar (which was used in Russia before 1917,
* Britain & colonies before 1752, anywhere else before 1582,
* and is still in use by some communities) leave out the
* -year/100+year/400 terms, and add 10.]
*
* This algorithm was first published by Gauss (I think).
*
* WARNING: this function will overflow on 2106-02-07 06:28:16 on
* machines were long is 32-bit! (However, as time_t is signed, we
* will already get problems at other places on 2038-01-19 03:14:08)
*/
unsigned long mktime(unsigned int year, unsigned int mon,
unsigned int day, unsigned int hour,
unsigned int min, unsigned int sec)
{
if (0 >= (int) (mon -= 2)) { /* 1..12 -> 11,12,1..10 */
mon += 12; /* Puts Feb last since it has leap day */
year -= 1;
}
return (((
(unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) +
year*365 - 719499
)*24 + hour /* now have hours */
)*60 + min /* now have minutes */
)*60 + sec; /* finally seconds */
}
#define TICK_SIZE tick
#define FEBRUARY 2
#define STARTOFTIME 1970
#define SECDAY 86400L
#define SECYR (SECDAY * 365)
#define leapyear(year) ((year) % 4 == 0)
#define days_in_year(a) (leapyear(a) ? 366 : 365)
#define days_in_month(a) (month_days[(a) - 1])
static int month_days[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
/*
* This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
*/
void GregorianDay(struct rtc_time * tm)
{
int leapsToDate;
int lastYear;
int day;
int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
lastYear=tm->tm_year-1;
/*
* Number of leap corrections to apply up to end of last year
*/
leapsToDate = lastYear/4 - lastYear/100 + lastYear/400;
/*
* This year is a leap year if it is divisible by 4 except when it is
* divisible by 100 unless it is divisible by 400
*
* e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 will be
*/
if((tm->tm_year%4==0) &&
((tm->tm_year%100!=0) || (tm->tm_year%400==0)) &&
(tm->tm_mon>2))
{
/*
* We are past Feb. 29 in a leap year
*/
day=1;
}
else
{
day=0;
}
day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
tm->tm_mday;
tm->tm_wday=day%7;
}
void to_tm(int tim, struct rtc_time * tm)
{
register int i;
register long hms, day;
day = tim / SECDAY;
hms = tim % SECDAY;
/* Hours, minutes, seconds are easy */
tm->tm_hour = hms / 3600;
tm->tm_min = (hms % 3600) / 60;
tm->tm_sec = (hms % 3600) % 60;
/* Number of years in days */
for (i = STARTOFTIME; day >= days_in_year(i); i++)
day -= days_in_year(i);
tm->tm_year = i;
/* Number of months in days left */
if (leapyear(tm->tm_year))
days_in_month(FEBRUARY) = 29;
for (i = 1; day >= days_in_month(i); i++)
day -= days_in_month(i);
days_in_month(FEBRUARY) = 28;
tm->tm_mon = i;
/* Days are what is left over (+1) from all that. */
tm->tm_mday = day + 1;
/*
* Determine the day of week
*/
GregorianDay(tm);
}
|