1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/*
* $Id: time.c,v 1.17 1997/12/28 22:47:21 paulus Exp $
* Common time routines among all ppc machines.
*
* Written by Cort Dougan (cort@cs.nmt.edu) to merge
* Paul Mackerras' version and mine for PReP and Pmac.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <asm/segment.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include "time.h"
/* this is set to the appropriate pmac/prep/chrp func in init_IRQ() */
int (*set_rtc_time)(unsigned long);
/* keep track of when we need to update the rtc */
unsigned long last_rtc_update = 0;
/* The decrementer counts down by 128 every 128ns on a 601. */
#define DECREMENTER_COUNT_601 (1000000000 / HZ)
#define COUNT_PERIOD_NUM_601 1
#define COUNT_PERIOD_DEN_601 1000
unsigned decrementer_count; /* count value for 1e6/HZ microseconds */
unsigned count_period_num; /* 1 decrementer count equals */
unsigned count_period_den; /* count_period_num / count_period_den us */
/*
* timer_interrupt - gets called when the decrementer overflows,
* with interrupts disabled.
* We set it up to overflow again in 1/HZ seconds.
*/
void timer_interrupt(struct pt_regs * regs)
{
int dval, d;
while ((dval = get_dec()) < 0) {
/*
* Wait for the decrementer to change, then jump
* in and add decrementer_count to its value
* (quickly, before it changes again!)
*/
while ((d = get_dec()) == dval)
;
set_dec(d + decrementer_count);
do_timer(regs);
/*
* update the rtc when needed
*/
if ( xtime.tv_sec > last_rtc_update + 660 )
if (set_rtc_time(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
}
}
/*
* This version of gettimeofday has microsecond resolution.
*/
void do_gettimeofday(struct timeval *tv)
{
unsigned long flags;
save_flags(flags);
cli();
*tv = xtime;
tv->tv_usec += (decrementer_count - get_dec())
* count_period_num / count_period_den;
if (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
restore_flags(flags);
}
void do_settimeofday(struct timeval *tv)
{
unsigned long flags;
int frac_tick;
last_rtc_update = 0; /* so the rtc gets updated soon */
frac_tick = tv->tv_usec % (1000000 / HZ);
save_flags(flags);
cli();
xtime.tv_sec = tv->tv_sec;
xtime.tv_usec = tv->tv_usec - frac_tick;
set_dec(frac_tick * count_period_den / count_period_num);
restore_flags(flags);
}
void
time_init(void)
{
if ((_get_PVR() >> 16) == 1) {
/* 601 processor: dec counts down by 128 every 128ns */
decrementer_count = DECREMENTER_COUNT_601;
count_period_num = COUNT_PERIOD_NUM_601;
count_period_den = COUNT_PERIOD_DEN_601;
}
switch (_machine) {
case _MACH_Pmac:
/* can't call pmac_get_rtc_time() yet,
because via-cuda isn't initialized yet. */
if ((_get_PVR() >> 16) != 1)
pmac_calibrate_decr();
set_rtc_time = pmac_set_rtc_time;
break;
case _MACH_chrp:
chrp_time_init();
xtime.tv_sec = chrp_get_rtc_time();
if ((_get_PVR() >> 16) != 1)
chrp_calibrate_decr();
set_rtc_time = chrp_set_rtc_time;
break;
case _MACH_prep:
xtime.tv_sec = prep_get_rtc_time();
prep_calibrate_decr();
set_rtc_time = prep_set_rtc_time;
break;
}
xtime.tv_usec = 0;
/*
* mark the rtc/on-chip timer as in sync
* so we don't update right away
*/
last_rtc_update = xtime.tv_sec;
set_dec(decrementer_count);
}
/*
* Uses the on-board timer to calibrate the on-chip decrementer register
* for prep systems. On the pmac the OF tells us what the frequency is
* but on prep we have to figure it out.
* -- Cort
*/
int calibrate_done = 0;
volatile int *done_ptr = &calibrate_done;
void prep_calibrate_decr(void)
{
unsigned long flags;
save_flags(flags);
#define TIMER0_COUNT 0x40
#define TIMER_CONTROL 0x43
/* set timer to periodic mode */
outb_p(0x34,TIMER_CONTROL);/* binary, mode 2, LSB/MSB, ch 0 */
/* set the clock to ~100 Hz */
outb_p(LATCH & 0xff , TIMER0_COUNT); /* LSB */
outb(LATCH >> 8 , TIMER0_COUNT); /* MSB */
if (request_irq(0, prep_calibrate_decr_handler, 0, "timer", NULL) != 0)
panic("Could not allocate timer IRQ!");
__sti();
while ( ! *done_ptr ) /* nothing */; /* wait for calibrate */
restore_flags(flags);
free_irq( 0, NULL);
}
void prep_calibrate_decr_handler(int irq, void *dev, struct pt_regs * regs)
{
unsigned long freq, divisor;
static unsigned long t1 = 0, t2 = 0;
if ( !t1 )
t1 = get_dec();
else if (!t2)
{
t2 = get_dec();
t2 = t1-t2; /* decr's in 1/HZ */
t2 = t2*HZ; /* # decrs in 1s - thus in Hz */
if ( (t2>>20) > 100 )
{
printk("Decrementer frequency too high: %luMHz. Using 15MHz.\n",t2>>20);
t2 = 998700000/60;
}
freq = t2 * 60; /* try to make freq/1e6 an integer */
divisor = 60;
printk("time_init: decrementer frequency = %lu/%lu (%luMHz)\n",
freq, divisor,t2>>20);
decrementer_count = freq / HZ / divisor;
count_period_num = divisor;
count_period_den = freq / 1000000;
*done_ptr = 1;
}
}
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
*
* [For the Julian calendar (which was used in Russia before 1917,
* Britain & colonies before 1752, anywhere else before 1582,
* and is still in use by some communities) leave out the
* -year/100+year/400 terms, and add 10.]
*
* This algorithm was first published by Gauss (I think).
*
* WARNING: this function will overflow on 2106-02-07 06:28:16 on
* machines were long is 32-bit! (However, as time_t is signed, we
* will already get problems at other places on 2038-01-19 03:14:08)
*/
unsigned long mktime(unsigned int year, unsigned int mon,
unsigned int day, unsigned int hour,
unsigned int min, unsigned int sec)
{
if (0 >= (int) (mon -= 2)) { /* 1..12 -> 11,12,1..10 */
mon += 12; /* Puts Feb last since it has leap day */
year -= 1;
}
return (((
(unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) +
year*365 - 719499
)*24 + hour /* now have hours */
)*60 + min /* now have minutes */
)*60 + sec; /* finally seconds */
}
#define TICK_SIZE tick
#define FEBRUARY 2
#define STARTOFTIME 1970
#define SECDAY 86400L
#define SECYR (SECDAY * 365)
#define leapyear(year) ((year) % 4 == 0)
#define days_in_year(a) (leapyear(a) ? 366 : 365)
#define days_in_month(a) (month_days[(a) - 1])
static int month_days[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
void to_tm(int tim, struct rtc_time * tm)
{
register int i;
register long hms, day;
day = tim / SECDAY;
hms = tim % SECDAY;
/* Hours, minutes, seconds are easy */
tm->tm_hour = hms / 3600;
tm->tm_min = (hms % 3600) / 60;
tm->tm_sec = (hms % 3600) % 60;
/* Number of years in days */
for (i = STARTOFTIME; day >= days_in_year(i); i++)
day -= days_in_year(i);
tm->tm_year = i;
/* Number of months in days left */
if (leapyear(tm->tm_year))
days_in_month(FEBRUARY) = 29;
for (i = 1; day >= days_in_month(i); i++)
day -= days_in_month(i);
days_in_month(FEBRUARY) = 28;
tm->tm_mon = i;
/* Days are what is left over (+1) from all that. */
tm->tm_mday = day + 1;
}
|