1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
|
/* smp.c: Sparc SMP support.
*
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
*/
#include <asm/head.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/tasks.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>
#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/atops.h>
#include <asm/spinlock.h>
#include <asm/hardirq.h>
#include <asm/softirq.h>
#define __KERNEL_SYSCALLS__
#include <linux/unistd.h>
#define IRQ_RESCHEDULE 13
#define IRQ_STOP_CPU 14
#define IRQ_CROSS_CALL 15
extern ctxd_t *srmmu_ctx_table_phys;
extern int linux_num_cpus;
extern void calibrate_delay(void);
/* XXX Let's get rid of this thing if we can... */
extern struct task_struct *current_set[NR_CPUS];
volatile int smp_processors_ready = 0;
unsigned long cpu_present_map = 0;
int smp_num_cpus = 1;
int smp_threads_ready=0;
unsigned char mid_xlate[NR_CPUS] = { 0, 0, 0, 0, };
volatile unsigned long cpu_callin_map[NR_CPUS] = {0,};
volatile unsigned long smp_spinning[NR_CPUS] = { 0, };
unsigned long smp_proc_in_lock[NR_CPUS] = { 0, };
struct cpuinfo_sparc cpu_data[NR_CPUS];
static unsigned char boot_cpu_id = 0;
static int smp_activated = 0;
volatile int cpu_number_map[NR_CPUS];
volatile int cpu_logical_map[NR_CPUS];
/* The only guaranteed locking primitive available on all Sparc
* processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
* places the current byte at the effective address into dest_reg and
* places 0xff there afterwards. Pretty lame locking primitive
* compared to the Alpha and the intel no? Most Sparcs have 'swap'
* instruction which is much better...
*/
struct klock_info klock_info = { KLOCK_CLEAR, 0 };
volatile unsigned long ipi_count;
#ifdef __SMP_PROF__
volatile unsigned long smp_spins[NR_CPUS]={0};
volatile unsigned long smp_spins_syscall[NR_CPUS]={0};
volatile unsigned long smp_spins_syscall_cur[NR_CPUS]={0};
volatile unsigned long smp_spins_sys_idle[NR_CPUS]={0};
volatile unsigned long smp_idle_count[1+NR_CPUS]={0,};
#endif
#if defined (__SMP_PROF__)
volatile unsigned long smp_idle_map=0;
#endif
volatile int smp_process_available=0;
/*#define SMP_DEBUG*/
#ifdef SMP_DEBUG
#define SMP_PRINTK(x) printk x
#else
#define SMP_PRINTK(x)
#endif
static volatile int smp_commenced = 0;
static char smp_buf[512];
/* Not supported on Sparc yet. */
void smp_setup(char *str, int *ints)
{
}
char *smp_info(void)
{
sprintf(smp_buf,
" CPU0\t\tCPU1\t\tCPU2\t\tCPU3\n"
"State: %s\t\t%s\t\t%s\t\t%s\n",
(cpu_present_map & 1) ? ((klock_info.akp == 0) ? "akp" : "online") : "offline",
(cpu_present_map & 2) ? ((klock_info.akp == 1) ? "akp" : "online") : "offline",
(cpu_present_map & 4) ? ((klock_info.akp == 2) ? "akp" : "online") : "offline",
(cpu_present_map & 8) ? ((klock_info.akp == 3) ? "akp" : "online") : "offline");
return smp_buf;
}
static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val)
{
__asm__ __volatile__("swap [%1], %0\n\t" :
"=&r" (val), "=&r" (ptr) :
"0" (val), "1" (ptr));
return val;
}
/*
* The bootstrap kernel entry code has set these up. Save them for
* a given CPU
*/
void smp_store_cpu_info(int id)
{
cpu_data[id].udelay_val = loops_per_sec; /* this is it on sparc. */
}
void smp_commence(void)
{
/*
* Lets the callin's below out of their loop.
*/
local_flush_cache_all();
local_flush_tlb_all();
smp_commenced = 1;
local_flush_cache_all();
local_flush_tlb_all();
}
static void smp_setup_percpu_timer(void);
void smp_callin(void)
{
int cpuid = hard_smp_processor_id();
local_flush_cache_all();
local_flush_tlb_all();
set_irq_udt(mid_xlate[boot_cpu_id]);
/* Get our local ticker going. */
smp_setup_percpu_timer();
calibrate_delay();
smp_store_cpu_info(cpuid);
local_flush_cache_all();
local_flush_tlb_all();
/* Allow master to continue. */
swap((unsigned long *)&cpu_callin_map[cpuid], 1);
local_flush_cache_all();
local_flush_tlb_all();
while(!task[cpuid] || current_set[cpuid] != task[cpuid])
barrier();
/* Fix idle thread fields. */
__asm__ __volatile__("ld [%0], %%g6\n\t"
: : "r" (¤t_set[cpuid])
: "memory" /* paranoid */);
current->mm->mmap->vm_page_prot = PAGE_SHARED;
current->mm->mmap->vm_start = PAGE_OFFSET;
current->mm->mmap->vm_end = init_task.mm->mmap->vm_end;
while(!smp_commenced)
barrier();
local_flush_cache_all();
local_flush_tlb_all();
__sti();
}
extern int cpu_idle(void *unused);
extern void init_IRQ(void);
/* Only broken Intel needs this, thus it should not even be referenced
* globally...
*/
void initialize_secondary(void)
{
}
/* Activate a secondary processor. */
int start_secondary(void *unused)
{
trap_init();
init_IRQ();
smp_callin();
return cpu_idle(NULL);
}
void cpu_panic(void)
{
printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
panic("SMP bolixed\n");
}
/*
* Cycle through the processors asking the PROM to start each one.
*/
extern struct prom_cpuinfo linux_cpus[NCPUS];
static struct linux_prom_registers penguin_ctable;
void smp_boot_cpus(void)
{
int cpucount = 0;
int i = 0;
int first, prev;
printk("Entering SMP Mode...\n");
penguin_ctable.which_io = 0;
penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
penguin_ctable.reg_size = 0;
__sti();
cpu_present_map = 0;
for(i=0; i < linux_num_cpus; i++)
cpu_present_map |= (1<<i);
for(i=0; i < NR_CPUS; i++)
cpu_number_map[i] = -1;
for(i=0; i < NR_CPUS; i++)
cpu_logical_map[i] = -1;
mid_xlate[boot_cpu_id] = (linux_cpus[boot_cpu_id].mid & ~8);
cpu_number_map[boot_cpu_id] = 0;
cpu_logical_map[0] = boot_cpu_id;
klock_info.akp = boot_cpu_id;
current->processor = boot_cpu_id;
smp_store_cpu_info(boot_cpu_id);
set_irq_udt(mid_xlate[boot_cpu_id]);
smp_setup_percpu_timer();
local_flush_cache_all();
if(linux_num_cpus == 1)
return; /* Not an MP box. */
for(i = 0; i < NR_CPUS; i++) {
if(i == boot_cpu_id)
continue;
if(cpu_present_map & (1 << i)) {
extern unsigned long sparc_cpu_startup;
unsigned long *entry = &sparc_cpu_startup;
struct task_struct *p;
int timeout;
/* Cook up an idler for this guy. */
kernel_thread(start_secondary, NULL, CLONE_PID);
p = task[++cpucount];
p->processor = i;
current_set[i] = p;
/* See trampoline.S for details... */
entry += ((i-1) * 3);
/* whirrr, whirrr, whirrrrrrrrr... */
printk("Starting CPU %d at %p\n", i, entry);
mid_xlate[i] = (linux_cpus[i].mid & ~8);
local_flush_cache_all();
prom_startcpu(linux_cpus[i].prom_node,
&penguin_ctable, 0, (char *)entry);
/* wheee... it's going... */
for(timeout = 0; timeout < 5000000; timeout++) {
if(cpu_callin_map[i])
break;
udelay(100);
}
if(cpu_callin_map[i]) {
/* Another "Red Snapper". */
cpu_number_map[i] = i;
cpu_logical_map[i] = i;
} else {
cpucount--;
printk("Processor %d is stuck.\n", i);
}
}
if(!(cpu_callin_map[i])) {
cpu_present_map &= ~(1 << i);
cpu_number_map[i] = -1;
}
}
local_flush_cache_all();
if(cpucount == 0) {
printk("Error: only one Processor found.\n");
cpu_present_map = (1 << smp_processor_id());
} else {
unsigned long bogosum = 0;
for(i = 0; i < NR_CPUS; i++) {
if(cpu_present_map & (1 << i))
bogosum += cpu_data[i].udelay_val;
}
printk("Total of %d Processors activated (%lu.%02lu BogoMIPS).\n",
cpucount + 1,
(bogosum + 2500)/500000,
((bogosum + 2500)/5000)%100);
smp_activated = 1;
smp_num_cpus = cpucount + 1;
}
/* Setup CPU list for IRQ distribution scheme. */
first = prev = -1;
for(i = 0; i < NR_CPUS; i++) {
if(cpu_present_map & (1 << i)) {
if(first == -1)
first = i;
if(prev != -1)
cpu_data[i].next = i;
cpu_data[i].mid = mid_xlate[i];
prev = i;
}
}
cpu_data[prev].next = first;
/* Ok, they are spinning and ready to go. */
smp_processors_ready = 1;
}
/* At each hardware IRQ, we get this called to forward IRQ reception
* to the next processor. The caller must disable the IRQ level being
* serviced globally so that there are no double interrupts received.
*/
void smp_irq_rotate(int cpu)
{
if(smp_processors_ready)
set_irq_udt(cpu_data[cpu_data[cpu].next].mid);
}
/* Cross calls, in order to work efficiently and atomically do all
* the message passing work themselves, only stopcpu and reschedule
* messages come through here.
*/
void smp_message_pass(int target, int msg, unsigned long data, int wait)
{
static unsigned long smp_cpu_in_msg[NR_CPUS];
unsigned long mask;
int me = smp_processor_id();
int irq, i;
if(msg == MSG_RESCHEDULE) {
irq = IRQ_RESCHEDULE;
if(smp_cpu_in_msg[me])
return;
} else if(msg == MSG_STOP_CPU) {
irq = IRQ_STOP_CPU;
} else {
goto barf;
}
smp_cpu_in_msg[me]++;
if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) {
mask = cpu_present_map;
if(target == MSG_ALL_BUT_SELF)
mask &= ~(1 << me);
for(i = 0; i < 4; i++) {
if(mask & (1 << i))
set_cpu_int(mid_xlate[i], irq);
}
} else {
set_cpu_int(mid_xlate[target], irq);
}
smp_cpu_in_msg[me]--;
return;
barf:
printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me);
panic("Bogon SMP message pass.");
}
struct smp_funcall {
smpfunc_t func;
unsigned long arg1;
unsigned long arg2;
unsigned long arg3;
unsigned long arg4;
unsigned long arg5;
unsigned long processors_in[NR_CPUS]; /* Set when ipi entered. */
unsigned long processors_out[NR_CPUS]; /* Set when ipi exited. */
} ccall_info;
static spinlock_t cross_call_lock = SPIN_LOCK_UNLOCKED;
/* Cross calls must be serialized, at least currently. */
void smp_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2,
unsigned long arg3, unsigned long arg4, unsigned long arg5)
{
if(smp_processors_ready) {
register int ncpus = smp_num_cpus;
unsigned long flags;
spin_lock_irqsave(&cross_call_lock, flags);
/* Init function glue. */
ccall_info.func = func;
ccall_info.arg1 = arg1;
ccall_info.arg2 = arg2;
ccall_info.arg3 = arg3;
ccall_info.arg4 = arg4;
ccall_info.arg5 = arg5;
/* Init receive/complete mapping, plus fire the IPI's off. */
{
register void (*send_ipi)(int,int) = set_cpu_int;
register unsigned long mask;
register int i;
mask = (cpu_present_map & ~(1 << smp_processor_id()));
for(i = 0; i < ncpus; i++) {
if(mask & (1 << i)) {
ccall_info.processors_in[i] = 0;
ccall_info.processors_out[i] = 0;
send_ipi(mid_xlate[i], IRQ_CROSS_CALL);
} else {
ccall_info.processors_in[i] = 1;
ccall_info.processors_out[i] = 1;
}
}
}
/* First, run local copy. */
func(arg1, arg2, arg3, arg4, arg5);
{
register int i;
i = 0;
do {
while(!ccall_info.processors_in[i])
barrier();
} while(++i < ncpus);
i = 0;
do {
while(!ccall_info.processors_out[i])
barrier();
} while(++i < ncpus);
}
spin_unlock_irqrestore(&cross_call_lock, flags);
} else
func(arg1, arg2, arg3, arg4, arg5); /* Just need to run local copy. */
}
void smp_flush_cache_all(void)
{ xc0((smpfunc_t) local_flush_cache_all); }
void smp_flush_tlb_all(void)
{ xc0((smpfunc_t) local_flush_tlb_all); }
void smp_flush_cache_mm(struct mm_struct *mm)
{
if(mm->context != NO_CONTEXT) {
if(mm->cpu_vm_mask == (1 << smp_processor_id()))
local_flush_cache_mm(mm);
else
xc1((smpfunc_t) local_flush_cache_mm, (unsigned long) mm);
}
}
void smp_flush_tlb_mm(struct mm_struct *mm)
{
if(mm->context != NO_CONTEXT) {
if(mm->cpu_vm_mask == (1 << smp_processor_id())) {
local_flush_tlb_mm(mm);
} else {
xc1((smpfunc_t) local_flush_tlb_mm, (unsigned long) mm);
if(mm->count == 1 && current->mm == mm)
mm->cpu_vm_mask = (1 << smp_processor_id());
}
}
}
void smp_flush_cache_range(struct mm_struct *mm, unsigned long start,
unsigned long end)
{
if(mm->context != NO_CONTEXT) {
if(mm->cpu_vm_mask == (1 << smp_processor_id()))
local_flush_cache_range(mm, start, end);
else
xc3((smpfunc_t) local_flush_cache_range, (unsigned long) mm,
start, end);
}
}
void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start,
unsigned long end)
{
if(mm->context != NO_CONTEXT) {
if(mm->cpu_vm_mask == (1 << smp_processor_id()))
local_flush_tlb_range(mm, start, end);
else
xc3((smpfunc_t) local_flush_tlb_range, (unsigned long) mm,
start, end);
}
}
void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
if(mm->context != NO_CONTEXT) {
if(mm->cpu_vm_mask == (1 << smp_processor_id()))
local_flush_cache_page(vma, page);
else
xc2((smpfunc_t) local_flush_cache_page,
(unsigned long) vma, page);
}
}
void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
if(mm->context != NO_CONTEXT) {
if(mm->cpu_vm_mask == (1 << smp_processor_id()))
local_flush_tlb_page(vma, page);
else
xc2((smpfunc_t) local_flush_tlb_page, (unsigned long) vma, page);
}
}
void smp_flush_page_to_ram(unsigned long page)
{
/* Current theory is that those who call this are the one's
* who have just dirtied their cache with the pages contents
* in kernel space, therefore we only run this on local cpu.
*
* XXX This experiment failed, research further... -DaveM
*/
#if 1
xc1((smpfunc_t) local_flush_page_to_ram, page);
#else
local_flush_page_to_ram(page);
#endif
}
void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
if(mm->cpu_vm_mask == (1 << smp_processor_id()))
local_flush_sig_insns(mm, insn_addr);
else
xc2((smpfunc_t) local_flush_sig_insns, (unsigned long) mm, insn_addr);
}
/* Reschedule call back. */
void smp_reschedule_irq(void)
{
need_resched=1;
}
/* Running cross calls. */
void smp_cross_call_irq(void)
{
int i = smp_processor_id();
ccall_info.processors_in[i] = 1;
ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
ccall_info.arg4, ccall_info.arg5);
ccall_info.processors_out[i] = 1;
}
/* Stopping processors. */
void smp_stop_cpu_irq(void)
{
__sti();
while(1)
barrier();
}
/* Protects counters touched during level14 ticker */
spinlock_t ticker_lock = SPIN_LOCK_UNLOCKED;
/* 32-bit Sparc specific profiling function. */
static inline void sparc_do_profile(unsigned long pc)
{
if(prof_buffer && current->pid) {
extern int _stext;
pc -= (unsigned long) &_stext;
pc >>= prof_shift;
spin_lock(&ticker_lock);
if(pc < prof_len)
prof_buffer[pc]++;
else
prof_buffer[prof_len - 1]++;
spin_unlock(&ticker_lock);
}
}
volatile unsigned long smp_local_timer_ticks[1+NR_CPUS]={0,};
unsigned int prof_multiplier[NR_CPUS];
unsigned int prof_counter[NR_CPUS];
extern void update_one_process(struct task_struct *p, unsigned long ticks,
unsigned long user, unsigned long system);
void smp_percpu_timer_interrupt(struct pt_regs *regs)
{
int cpu = smp_processor_id();
clear_profile_irq(mid_xlate[cpu]);
if(!user_mode(regs))
sparc_do_profile(regs->pc);
if(!--prof_counter[cpu]) {
int user = user_mode(regs);
if(current->pid) {
update_one_process(current, 1, user, !user);
if(--current->counter < 0) {
current->counter = 0;
need_resched = 1;
}
spin_lock(&ticker_lock);
if(user) {
if(current->priority < DEF_PRIORITY)
kstat.cpu_nice++;
else
kstat.cpu_user++;
} else {
kstat.cpu_system++;
}
spin_unlock(&ticker_lock);
}
prof_counter[cpu] = prof_multiplier[cpu];
}
#ifdef __SMP_PROF__
smp_local_timer_ticks[cpu]++;
#endif
}
extern unsigned int lvl14_resolution;
static void smp_setup_percpu_timer(void)
{
int cpu = smp_processor_id();
prof_counter[cpu] = prof_multiplier[cpu] = 1;
load_profile_irq(mid_xlate[cpu], lvl14_resolution);
if(cpu == boot_cpu_id)
enable_pil_irq(14);
}
int setup_profiling_timer(unsigned int multiplier)
{
int i;
unsigned long flags;
/* Prevent level14 ticker IRQ flooding. */
if((!multiplier) || (lvl14_resolution / multiplier) < 500)
return -EINVAL;
save_and_cli(flags);
for(i = 0; i < NR_CPUS; i++) {
if(cpu_present_map & (1 << i)) {
load_profile_irq(mid_xlate[i], lvl14_resolution / multiplier);
prof_multiplier[i] = multiplier;
}
}
restore_flags(flags);
return 0;
}
|