1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
|
/* $Id: time.c,v 1.16 1998/09/05 17:25:28 jj Exp $
* time.c: UltraSparc timer and TOD clock support.
*
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
*
* Based largely on code which is:
*
* Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
*/
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <asm/oplib.h>
#include <asm/mostek.h>
#include <asm/timer.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/sbus.h>
#include <asm/fhc.h>
#include <asm/pbm.h>
#include <asm/ebus.h>
struct mostek48t02 *mstk48t02_regs = 0;
static struct mostek48t08 *mstk48t08_regs = 0;
static struct mostek48t59 *mstk48t59_regs = 0;
static int set_rtc_mmss(unsigned long);
/* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick
*
* NOTE: On SUN5 systems the ticker interrupt comes in using 2
* interrupts, one at level14 and one with softint bit 0.
*/
unsigned long timer_tick_offset;
static unsigned long timer_tick_compare;
static unsigned long timer_ticks_per_usec;
static __inline__ void timer_check_rtc(void)
{
/* last time the cmos clock got updated */
static long last_rtc_update=0;
/* Determine when to update the Mostek clock. */
if ((time_status & STA_UNSYNC) == 0 &&
xtime.tv_sec > last_rtc_update + 660 &&
xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 &&
xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
last_rtc_update = xtime.tv_sec - 600;
/* do it again in 60 s */
}
}
static void timer_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
unsigned long ticks;
do {
do_timer(regs);
__asm__ __volatile__("
rd %%tick_cmpr, %0
add %0, %2, %0
wr %0, 0, %%tick_cmpr
rd %%tick, %1"
: "=&r" (timer_tick_compare), "=r" (ticks)
: "r" (timer_tick_offset));
} while (ticks >= timer_tick_compare);
timer_check_rtc();
}
#ifdef __SMP__
void timer_tick_interrupt(struct pt_regs *regs)
{
do_timer(regs);
/*
* Only keep timer_tick_offset uptodate, but don't set TICK_CMPR.
*/
__asm__ __volatile__("
rd %%tick_cmpr, %0
add %0, %1, %0"
: "=&r" (timer_tick_compare)
: "r" (timer_tick_offset));
timer_check_rtc();
}
#endif
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
*
* [For the Julian calendar (which was used in Russia before 1917,
* Britain & colonies before 1752, anywhere else before 1582,
* and is still in use by some communities) leave out the
* -year/100+year/400 terms, and add 10.]
*
* This algorithm was first published by Gauss (I think).
*
* WARNING: this function will overflow on 2106-02-07 06:28:16 on
* machines were long is 32-bit! (However, as time_t is signed, we
* will already get problems at other places on 2038-01-19 03:14:08)
*/
static inline unsigned long mktime(unsigned int year, unsigned int mon,
unsigned int day, unsigned int hour,
unsigned int min, unsigned int sec)
{
if (0 >= (int) (mon -= 2)) { /* 1..12 -> 11,12,1..10 */
mon += 12; /* Puts Feb last since it has leap day */
year -= 1;
}
return (((
(unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) +
year*365 - 719499
)*24 + hour /* now have hours */
)*60 + min /* now have minutes */
)*60 + sec; /* finally seconds */
}
/* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
static void __init kick_start_clock(void)
{
register struct mostek48t02 *regs = mstk48t02_regs;
unsigned char sec;
int i, count;
prom_printf("CLOCK: Clock was stopped. Kick start ");
/* Turn on the kick start bit to start the oscillator. */
regs->creg |= MSTK_CREG_WRITE;
regs->sec &= ~MSTK_STOP;
regs->hour |= MSTK_KICK_START;
regs->creg &= ~MSTK_CREG_WRITE;
/* Delay to allow the clock oscillator to start. */
sec = MSTK_REG_SEC(regs);
for (i = 0; i < 3; i++) {
while (sec == MSTK_REG_SEC(regs))
for (count = 0; count < 100000; count++)
/* nothing */ ;
prom_printf(".");
sec = regs->sec;
}
prom_printf("\n");
/* Turn off kick start and set a "valid" time and date. */
regs->creg |= MSTK_CREG_WRITE;
regs->hour &= ~MSTK_KICK_START;
MSTK_SET_REG_SEC(regs,0);
MSTK_SET_REG_MIN(regs,0);
MSTK_SET_REG_HOUR(regs,0);
MSTK_SET_REG_DOW(regs,5);
MSTK_SET_REG_DOM(regs,1);
MSTK_SET_REG_MONTH(regs,8);
MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
regs->creg &= ~MSTK_CREG_WRITE;
/* Ensure the kick start bit is off. If it isn't, turn it off. */
while (regs->hour & MSTK_KICK_START) {
prom_printf("CLOCK: Kick start still on!\n");
regs->creg |= MSTK_CREG_WRITE;
regs->hour &= ~MSTK_KICK_START;
regs->creg &= ~MSTK_CREG_WRITE;
}
prom_printf("CLOCK: Kick start procedure successful.\n");
}
/* Return nonzero if the clock chip battery is low. */
static int __init has_low_battery(void)
{
register struct mostek48t02 *regs = mstk48t02_regs;
unsigned char data1, data2;
data1 = regs->eeprom[0]; /* Read some data. */
regs->eeprom[0] = ~data1; /* Write back the complement. */
data2 = regs->eeprom[0]; /* Read back the complement. */
regs->eeprom[0] = data1; /* Restore the original value. */
return (data1 == data2); /* Was the write blocked? */
}
/* Probe for the real time clock chip. */
static void __init set_system_time(void)
{
unsigned int year, mon, day, hour, min, sec;
struct mostek48t02 *mregs;
do_get_fast_time = do_gettimeofday;
mregs = mstk48t02_regs;
if(!mregs) {
prom_printf("Something wrong, clock regs not mapped yet.\n");
prom_halt();
}
mregs->creg |= MSTK_CREG_READ;
sec = MSTK_REG_SEC(mregs);
min = MSTK_REG_MIN(mregs);
hour = MSTK_REG_HOUR(mregs);
day = MSTK_REG_DOM(mregs);
mon = MSTK_REG_MONTH(mregs);
year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
xtime.tv_usec = 0;
mregs->creg &= ~MSTK_CREG_READ;
}
void __init clock_probe(void)
{
struct linux_prom_registers clk_reg[2];
char model[128];
int node, busnd = -1, err;
unsigned long flags;
#ifdef CONFIG_PCI
struct linux_ebus *ebus = 0;
#endif
__save_and_cli(flags);
if(central_bus != NULL) {
busnd = central_bus->child->prom_node;
}
#ifdef CONFIG_PCI
else if (ebus_chain != NULL) {
ebus = ebus_chain;
busnd = ebus->prom_node;
}
#endif
else {
busnd = SBus_chain->prom_node;
}
if(busnd == -1) {
prom_printf("clock_probe: problem, cannot find bus to search.\n");
prom_halt();
}
node = prom_getchild(busnd);
while(1) {
prom_getstring(node, "model", model, sizeof(model));
if(strcmp(model, "mk48t02") &&
strcmp(model, "mk48t08") &&
strcmp(model, "mk48t59")) {
node = prom_getsibling(node);
#ifdef CONFIG_PCI
if ((node == 0) && ebus) {
ebus = ebus->next;
if (ebus) {
busnd = ebus->prom_node;
node = prom_getchild(busnd);
}
}
#endif
if(node == 0) {
prom_printf("clock_probe: Cannot find timer chip\n");
prom_halt();
}
continue;
}
err = prom_getproperty(node, "reg", (char *)clk_reg,
sizeof(clk_reg));
if(err == -1) {
prom_printf("clock_probe: Cannot get Mostek reg property\n");
prom_halt();
}
if(central_bus) {
prom_apply_fhc_ranges(central_bus->child, clk_reg, 1);
prom_apply_central_ranges(central_bus, clk_reg, 1);
}
#ifdef CONFIG_PCI
else if (ebus_chain) {
struct linux_ebus_device *edev;
for_each_ebusdev(edev, ebus)
if (edev->prom_node == node)
break;
if (!edev) {
prom_printf("%s: Mostek not probed by EBUS\n",
__FUNCTION__);
prom_halt();
}
if (check_region(edev->base_address[0],
sizeof(struct mostek48t59))) {
prom_printf("%s: Can't get region %lx, %d\n",
__FUNCTION__, edev->base_address[0],
sizeof(struct mostek48t59));
prom_halt();
}
request_region(edev->base_address[0],
sizeof(struct mostek48t59), "clock");
mstk48t59_regs = (struct mostek48t59 *)
edev->base_address[0];
mstk48t02_regs = &mstk48t59_regs->regs;
break;
}
#endif
else {
prom_adjust_regs(clk_reg, 1,
SBus_chain->sbus_ranges,
SBus_chain->num_sbus_ranges);
}
if(model[5] == '0' && model[6] == '2') {
mstk48t02_regs = (struct mostek48t02 *)
sparc_alloc_io(clk_reg[0].phys_addr,
(void *) 0, sizeof(*mstk48t02_regs),
"clock", clk_reg[0].which_io, 0x0);
} else if(model[5] == '0' && model[6] == '8') {
mstk48t08_regs = (struct mostek48t08 *)
sparc_alloc_io(clk_reg[0].phys_addr,
(void *) 0, sizeof(*mstk48t08_regs),
"clock", clk_reg[0].which_io, 0x0);
mstk48t02_regs = &mstk48t08_regs->regs;
} else {
mstk48t59_regs = (struct mostek48t59 *)
sparc_alloc_io(clk_reg[0].phys_addr,
(void *) 0, sizeof(*mstk48t59_regs),
"clock", clk_reg[0].which_io, 0x0);
mstk48t02_regs = &mstk48t59_regs->regs;
}
break;
}
/* Report a low battery voltage condition. */
if (has_low_battery())
prom_printf("NVRAM: Low battery voltage!\n");
/* Kick start the clock if it is completely stopped. */
if (mstk48t02_regs->sec & MSTK_STOP)
kick_start_clock();
set_system_time();
__restore_flags(flags);
}
#ifndef BCD_TO_BIN
#define BCD_TO_BIN(val) (((val)&15) + ((val)>>4)*10)
#endif
#ifndef BIN_TO_BCD
#define BIN_TO_BCD(val) ((((val)/10)<<4) + (val)%10)
#endif
extern void init_timers(void (*func)(int, void *, struct pt_regs *),
unsigned long *);
void __init time_init(void)
{
/* clock_probe() is now done at end of [se]bus_init on sparc64
* so that sbus, fhc and ebus bus information is probed and
* available.
*/
unsigned long clock;
init_timers(timer_interrupt, &clock);
timer_tick_offset = clock / HZ;
timer_ticks_per_usec = clock / 1000000;
}
static __inline__ unsigned long do_gettimeoffset(void)
{
unsigned long ticks;
__asm__ __volatile__("
rd %%tick, %%g1
add %1, %%g1, %0
sub %0, %2, %0
"
: "=r" (ticks)
: "r" (timer_tick_offset), "r" (timer_tick_compare)
: "g1", "g2");
return ticks / timer_ticks_per_usec;
}
void do_gettimeofday(struct timeval *tv)
{
/* Load doubles must be used on xtime so that what we get
* is guarenteed to be atomic, this is why we can run this
* with interrupts on full blast. Don't touch this... -DaveM
*
* Note with time_t changes to the timeval type, I must now use
* nucleus atomic quad 128-bit loads.
*/
__asm__ __volatile__("
sethi %hi(timer_tick_offset), %g3
sethi %hi(xtime), %g2
sethi %hi(timer_tick_compare), %g1
ldx [%g3 + %lo(timer_tick_offset)], %g3
or %g2, %lo(xtime), %g2
or %g1, %lo(timer_tick_compare), %g1
1: ldda [%g2] 0x24, %o4
membar #LoadLoad | #MemIssue
rd %tick, %o1
ldx [%g1], %g7
membar #LoadLoad | #MemIssue
ldda [%g2] 0x24, %o2
membar #LoadLoad
xor %o4, %o2, %o2
xor %o5, %o3, %o3
orcc %o2, %o3, %g0
bne,pn %xcc, 1b
sethi %hi(lost_ticks), %o2
sethi %hi(timer_ticks_per_usec), %o3
ldx [%o2 + %lo(lost_ticks)], %o2
add %g3, %o1, %o1
ldx [%o3 + %lo(timer_ticks_per_usec)], %o3
sub %o1, %g7, %o1
brz,pt %o2, 1f
udivx %o1, %o3, %o1
sethi %hi(10000), %g2
or %g2, %lo(10000), %g2
add %o1, %g2, %o1
1: sethi %hi(1000000), %o2
srlx %o5, 32, %o5
or %o2, %lo(1000000), %o2
add %o5, %o1, %o5
cmp %o5, %o2
bl,a,pn %xcc, 1f
stx %o4, [%o0 + 0x0]
add %o4, 0x1, %o4
sub %o5, %o2, %o5
stx %o4, [%o0 + 0x0]
1: st %o5, [%o0 + 0x8]");
}
void do_settimeofday(struct timeval *tv)
{
cli();
tv->tv_usec -= do_gettimeoffset();
if(tv->tv_usec < 0) {
tv->tv_usec += 1000000;
tv->tv_sec--;
}
xtime = *tv;
time_adjust = 0; /* stop active adjtime() */
time_status |= STA_UNSYNC;
time_state = TIME_ERROR; /* p. 24, (a) */
time_maxerror = NTP_PHASE_LIMIT;
time_esterror = NTP_PHASE_LIMIT;
sti();
}
static int set_rtc_mmss(unsigned long nowtime)
{
int real_seconds, real_minutes, mostek_minutes;
struct mostek48t02 *regs = mstk48t02_regs;
/* Not having a register set can lead to trouble. */
if (!regs)
return -1;
/* Read the current RTC minutes. */
regs->creg |= MSTK_CREG_READ;
mostek_minutes = MSTK_REG_MIN(regs);
regs->creg &= ~MSTK_CREG_READ;
/*
* since we're only adjusting minutes and seconds,
* don't interfere with hour overflow. This avoids
* messing with unknown time zones but requires your
* RTC not to be off by more than 15 minutes
*/
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
if (((abs(real_minutes - mostek_minutes) + 15)/30) & 1)
real_minutes += 30; /* correct for half hour time zone */
real_minutes %= 60;
if (abs(real_minutes - mostek_minutes) < 30) {
regs->creg |= MSTK_CREG_WRITE;
MSTK_SET_REG_SEC(regs,real_seconds);
MSTK_SET_REG_MIN(regs,real_minutes);
regs->creg &= ~MSTK_CREG_WRITE;
} else
return -1;
return 0;
}
|