1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
|
/*
* linux/drivers/block/ll_rw_blk.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1994, Karl Keyte: Added support for disk statistics
* Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
* Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
* kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
*/
/*
* This handles all read/write requests to block devices
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/config.h>
#include <linux/locks.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
#include <asm/system.h>
#include <asm/io.h>
#include <linux/blk.h>
#include <linux/highmem.h>
#include <linux/raid/md.h>
#include <linux/module.h>
/*
* MAC Floppy IWM hooks
*/
#ifdef CONFIG_MAC_FLOPPY_IWM
extern int mac_floppy_init(void);
#endif
/*
* For the allocated request tables
*/
static kmem_cache_t *request_cachep;
/*
* The "disk" task queue is used to start the actual requests
* after a plug
*/
DECLARE_TASK_QUEUE(tq_disk);
/*
* Protect the request list against multiple users..
*
* With this spinlock the Linux block IO subsystem is 100% SMP threaded
* from the IRQ event side, and almost 100% SMP threaded from the syscall
* side (we still have protect against block device array operations, and
* the do_request() side is casually still unsafe. The kernel lock protects
* this part currently.).
*
* there is a fair chance that things will work just OK if these functions
* are called with no global kernel lock held ...
*/
spinlock_t io_request_lock = SPIN_LOCK_UNLOCKED;
/* This specifies how many sectors to read ahead on the disk. */
int read_ahead[MAX_BLKDEV];
/* blk_dev_struct is:
* *request_fn
* *current_request
*/
struct blk_dev_struct blk_dev[MAX_BLKDEV]; /* initialized by blk_dev_init() */
/*
* blk_size contains the size of all block-devices in units of 1024 byte
* sectors:
*
* blk_size[MAJOR][MINOR]
*
* if (!blk_size[MAJOR]) then no minor size checking is done.
*/
int * blk_size[MAX_BLKDEV];
/*
* blksize_size contains the size of all block-devices:
*
* blksize_size[MAJOR][MINOR]
*
* if (!blksize_size[MAJOR]) then 1024 bytes is assumed.
*/
int * blksize_size[MAX_BLKDEV];
/*
* hardsect_size contains the size of the hardware sector of a device.
*
* hardsect_size[MAJOR][MINOR]
*
* if (!hardsect_size[MAJOR])
* then 512 bytes is assumed.
* else
* sector_size is hardsect_size[MAJOR][MINOR]
* This is currently set by some scsi devices and read by the msdos fs driver.
* Other uses may appear later.
*/
int * hardsect_size[MAX_BLKDEV];
/*
* The following tunes the read-ahead algorithm in mm/filemap.c
*/
int * max_readahead[MAX_BLKDEV];
/*
* Max number of sectors per request
*/
int * max_sectors[MAX_BLKDEV];
/*
* queued sectors for all devices, used to make sure we don't fill all
* of memory with locked buffers
*/
atomic_t queued_sectors;
/*
* high and low watermark for above
*/
static int high_queued_sectors, low_queued_sectors;
static int batch_requests, queue_nr_requests;
static DECLARE_WAIT_QUEUE_HEAD(blk_buffers_wait);
static inline int get_max_sectors(kdev_t dev)
{
if (!max_sectors[MAJOR(dev)])
return MAX_SECTORS;
return max_sectors[MAJOR(dev)][MINOR(dev)];
}
inline request_queue_t *__blk_get_queue(kdev_t dev)
{
struct blk_dev_struct *bdev = blk_dev + MAJOR(dev);
if (bdev->queue)
return bdev->queue(dev);
else
return &blk_dev[MAJOR(dev)].request_queue;
}
/*
* NOTE: the device-specific queue() functions
* have to be atomic!
*/
request_queue_t *blk_get_queue(kdev_t dev)
{
request_queue_t *ret;
unsigned long flags;
spin_lock_irqsave(&io_request_lock,flags);
ret = __blk_get_queue(dev);
spin_unlock_irqrestore(&io_request_lock,flags);
return ret;
}
static int __blk_cleanup_queue(struct list_head *head)
{
struct request *rq;
int i = 0;
if (list_empty(head))
return 0;
do {
rq = list_entry(head->next, struct request, table);
list_del(&rq->table);
kmem_cache_free(request_cachep, rq);
i++;
} while (!list_empty(head));
return i;
}
/**
* blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
* @q: the request queue to be released
*
* Description:
* blk_cleanup_queue is the pair to blk_init_queue(). It should
* be called when a request queue is being released; typically
* when a block device is being de-registered. Currently, its
* primary task it to free all the &struct request structures that
* were allocated to the queue.
* Caveat:
* Hopefully the low level driver will have finished any
* outstanding requests first...
**/
void blk_cleanup_queue(request_queue_t * q)
{
int count = queue_nr_requests;
count -= __blk_cleanup_queue(&q->request_freelist[READ]);
count -= __blk_cleanup_queue(&q->request_freelist[WRITE]);
count -= __blk_cleanup_queue(&q->pending_freelist[READ]);
count -= __blk_cleanup_queue(&q->pending_freelist[WRITE]);
if (count)
printk("blk_cleanup_queue: leaked requests (%d)\n", count);
memset(q, 0, sizeof(*q));
}
/**
* blk_queue_headactive - indicate whether head of request queue may be active
* @q: The queue which this applies to.
* @active: A flag indication where the head of the queue is active.
*
* Description:
* The driver for a block device may choose to leave the currently active
* request on the request queue, removing it only when it has completed.
* The queue handling routines assume this by default for safety reasons
* and will not involve the head of the request queue in any merging or
* reordering of requests when the queue is unplugged (and thus may be
* working on this particular request).
*
* If a driver removes requests from the queue before processing them, then
* it may indicate that it does so, there by allowing the head of the queue
* to be involved in merging and reordering. This is done be calling
* blk_queue_headactive() with an @active flag of %0.
*
* If a driver processes several requests at once, it must remove them (or
* at least all but one of them) from the request queue.
*
* When a queue is plugged (see blk_queue_pluggable()) the head will be
* assumed to be inactive.
**/
void blk_queue_headactive(request_queue_t * q, int active)
{
q->head_active = active;
}
/**
* blk_queue_pluggable - define a plugging function for a request queue
* @q: the request queue to which the function will apply
* @plug: the function to be called to plug a queue
*
* Description:
* A request queue will be "plugged" if a request is added to it
* while it is empty. This allows a number of requests to be added
* before any are processed, thus providing an opportunity for these
* requests to be merged or re-ordered.
* The default plugging function (generic_plug_device()) sets the
* "plugged" flag for the queue and adds a task to the $tq_disk task
* queue to unplug the queue and call the request function at a
* later time.
*
* A device driver may provide an alternate plugging function by
* passing it to blk_queue_pluggable(). This function should set
* the "plugged" flag if it want calls to the request_function to be
* blocked, and should place a task on $tq_disk which will unplug
* the queue. Alternately it can simply do nothing and there-by
* disable plugging of the device.
**/
void blk_queue_pluggable (request_queue_t * q, plug_device_fn *plug)
{
q->plug_device_fn = plug;
}
/**
* blk_queue_make_request - define an alternate make_request function for a device
* @q: the request queue for the device to be affected
* @mfn: the alternate make_request function
*
* Description:
* The normal way for &struct buffer_heads to be passed to a device
* driver is for them to be collected into requests on a request
* queue, and then to allow the device driver to select requests
* off that queue when it is ready. This works well for many block
* devices. However some block devices (typically virtual devices
* such as md or lvm) do not benefit from the processing on the
* request queue, and are served best by having the requests passed
* directly to them. This can be achieved by providing a function
* to blk_queue_make_request().
*
* Caveat:
* The driver that does this *must* be able to deal appropriately
* with buffers in "highmemory", either by calling bh_kmap() to get
* a kernel mapping, to by calling create_bounce() to create a
* buffer in normal memory.
**/
void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
{
q->make_request_fn = mfn;
}
static inline int ll_new_segment(request_queue_t *q, struct request *req, int max_segments)
{
if (req->nr_segments < max_segments) {
req->nr_segments++;
return 1;
}
return 0;
}
static int ll_back_merge_fn(request_queue_t *q, struct request *req,
struct buffer_head *bh, int max_segments)
{
if (req->bhtail->b_data + req->bhtail->b_size == bh->b_data)
return 1;
return ll_new_segment(q, req, max_segments);
}
static int ll_front_merge_fn(request_queue_t *q, struct request *req,
struct buffer_head *bh, int max_segments)
{
if (bh->b_data + bh->b_size == req->bh->b_data)
return 1;
return ll_new_segment(q, req, max_segments);
}
static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
struct request *next, int max_segments)
{
int total_segments = req->nr_segments + next->nr_segments;
if (req->bhtail->b_data + req->bhtail->b_size == next->bh->b_data)
total_segments--;
if (total_segments > max_segments)
return 0;
req->nr_segments = total_segments;
return 1;
}
/*
* "plug" the device if there are no outstanding requests: this will
* force the transfer to start only after we have put all the requests
* on the list.
*
* This is called with interrupts off and no requests on the queue.
* (and with the request spinlock acquired)
*/
static void generic_plug_device(request_queue_t *q, kdev_t dev)
{
/*
* no need to replug device
*/
if (!list_empty(&q->queue_head) || q->plugged)
return;
q->plugged = 1;
queue_task(&q->plug_tq, &tq_disk);
}
/*
* remove the plug and let it rip..
*/
static inline void __generic_unplug_device(request_queue_t *q)
{
if (q->plugged) {
q->plugged = 0;
if (!list_empty(&q->queue_head))
q->request_fn(q);
}
}
void generic_unplug_device(void *data)
{
request_queue_t *q = (request_queue_t *) data;
unsigned long flags;
spin_lock_irqsave(&io_request_lock, flags);
__generic_unplug_device(q);
spin_unlock_irqrestore(&io_request_lock, flags);
}
static void blk_init_free_list(request_queue_t *q)
{
struct request *rq;
int i;
INIT_LIST_HEAD(&q->request_freelist[READ]);
INIT_LIST_HEAD(&q->request_freelist[WRITE]);
INIT_LIST_HEAD(&q->pending_freelist[READ]);
INIT_LIST_HEAD(&q->pending_freelist[WRITE]);
q->pending_free[READ] = q->pending_free[WRITE] = 0;
/*
* Divide requests in half between read and write
*/
for (i = 0; i < queue_nr_requests; i++) {
rq = kmem_cache_alloc(request_cachep, SLAB_KERNEL);
memset(rq, 0, sizeof(struct request));
rq->rq_status = RQ_INACTIVE;
list_add(&rq->table, &q->request_freelist[i & 1]);
}
init_waitqueue_head(&q->wait_for_request);
spin_lock_init(&q->queue_lock);
}
static int __make_request(request_queue_t * q, int rw, struct buffer_head * bh);
/**
* blk_init_queue - prepare a request queue for use with a block device
* @q: The &request_queue_t to be initialised
* @rfn: The function to be called to process requests that have been
* placed on the queue.
*
* Description:
* If a block device wishes to use the standard request handling procedures,
* which sorts requests and coalesces adjacent requests, then it must
* call blk_init_queue(). The function @rfn will be called when there
* are requests on the queue that need to be processed. If the device
* supports plugging, then @rfn may not be called immediately when requests
* are available on the queue, but may be called at some time later instead.
* Plugged queues are generally unplugged when a buffer belonging to one
* of the requests on the queue is needed, or due to memory pressure.
*
* @rfn is not required, or even expected, to remove all requests off the
* queue, but only as many as it can handle at a time. If it does leave
* requests on the queue, it is responsible for arranging that the requests
* get dealt with eventually.
*
* A global spin lock $io_request_lock must be held while manipulating the
* requests on the request queue.
*
* The request on the head of the queue is by default assumed to be
* potentially active, and it is not considered for re-ordering or merging
* whenever the given queue is unplugged. This behaviour can be changed with
* blk_queue_headactive().
*
* Note:
* blk_init_queue() must be paired with a blk_cleanup_queue() call
* when the block device is deactivated (such as at module unload).
**/
void blk_init_queue(request_queue_t * q, request_fn_proc * rfn)
{
INIT_LIST_HEAD(&q->queue_head);
elevator_init(&q->elevator, ELEVATOR_LINUS);
blk_init_free_list(q);
q->request_fn = rfn;
q->back_merge_fn = ll_back_merge_fn;
q->front_merge_fn = ll_front_merge_fn;
q->merge_requests_fn = ll_merge_requests_fn;
q->make_request_fn = __make_request;
q->plug_tq.sync = 0;
q->plug_tq.routine = &generic_unplug_device;
q->plug_tq.data = q;
q->plugged = 0;
/*
* These booleans describe the queue properties. We set the
* default (and most common) values here. Other drivers can
* use the appropriate functions to alter the queue properties.
* as appropriate.
*/
q->plug_device_fn = generic_plug_device;
q->head_active = 1;
}
#define blkdev_free_rq(list) list_entry((list)->next, struct request, table);
/*
* Get a free request. io_request_lock must be held and interrupts
* disabled on the way in.
*/
static inline struct request *get_request(request_queue_t *q, int rw)
{
struct request *rq = NULL;
if (!list_empty(&q->request_freelist[rw])) {
rq = blkdev_free_rq(&q->request_freelist[rw]);
list_del(&rq->table);
rq->rq_status = RQ_ACTIVE;
rq->special = NULL;
rq->q = q;
}
return rq;
}
/*
* No available requests for this queue, unplug the device.
*/
static struct request *__get_request_wait(request_queue_t *q, int rw)
{
register struct request *rq;
DECLARE_WAITQUEUE(wait, current);
add_wait_queue_exclusive(&q->wait_for_request, &wait);
for (;;) {
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_lock_irq(&io_request_lock);
rq = get_request(q, rw);
spin_unlock_irq(&io_request_lock);
if (rq)
break;
generic_unplug_device(q);
schedule();
}
remove_wait_queue(&q->wait_for_request, &wait);
current->state = TASK_RUNNING;
return rq;
}
static inline struct request *get_request_wait(request_queue_t *q, int rw)
{
register struct request *rq;
spin_lock_irq(&io_request_lock);
rq = get_request(q, rw);
spin_unlock_irq(&io_request_lock);
if (rq)
return rq;
return __get_request_wait(q, rw);
}
/* RO fail safe mechanism */
static long ro_bits[MAX_BLKDEV][8];
int is_read_only(kdev_t dev)
{
int minor,major;
major = MAJOR(dev);
minor = MINOR(dev);
if (major < 0 || major >= MAX_BLKDEV) return 0;
return ro_bits[major][minor >> 5] & (1 << (minor & 31));
}
void set_device_ro(kdev_t dev,int flag)
{
int minor,major;
major = MAJOR(dev);
minor = MINOR(dev);
if (major < 0 || major >= MAX_BLKDEV) return;
if (flag) ro_bits[major][minor >> 5] |= 1 << (minor & 31);
else ro_bits[major][minor >> 5] &= ~(1 << (minor & 31));
}
inline void drive_stat_acct (kdev_t dev, int rw,
unsigned long nr_sectors, int new_io)
{
unsigned int major = MAJOR(dev);
unsigned int index;
index = disk_index(dev);
if ((index >= DK_MAX_DISK) || (major >= DK_MAX_MAJOR))
return;
kstat.dk_drive[major][index] += new_io;
if (rw == READ) {
kstat.dk_drive_rio[major][index] += new_io;
kstat.dk_drive_rblk[major][index] += nr_sectors;
} else if (rw == WRITE) {
kstat.dk_drive_wio[major][index] += new_io;
kstat.dk_drive_wblk[major][index] += nr_sectors;
} else
printk(KERN_ERR "drive_stat_acct: cmd not R/W?\n");
}
/*
* add-request adds a request to the linked list.
* io_request_lock is held and interrupts disabled, as we muck with the
* request queue list.
*
* By this point, req->cmd is always either READ/WRITE, never READA,
* which is important for drive_stat_acct() above.
*/
static inline void add_request(request_queue_t * q, struct request * req,
struct list_head *insert_here)
{
drive_stat_acct(req->rq_dev, req->cmd, req->nr_sectors, 1);
if (!q->plugged && q->head_active && insert_here == &q->queue_head) {
spin_unlock_irq(&io_request_lock);
BUG();
}
/*
* elevator indicated where it wants this request to be
* inserted at elevator_merge time
*/
list_add(&req->queue, insert_here);
}
void inline blk_refill_freelist(request_queue_t *q, int rw)
{
if (q->pending_free[rw]) {
list_splice(&q->pending_freelist[rw], &q->request_freelist[rw]);
INIT_LIST_HEAD(&q->pending_freelist[rw]);
q->pending_free[rw] = 0;
}
}
/*
* Must be called with io_request_lock held and interrupts disabled
*/
void inline blkdev_release_request(struct request *req)
{
request_queue_t *q = req->q;
int rw = req->cmd;
req->rq_status = RQ_INACTIVE;
req->q = NULL;
/*
* Request may not have originated from ll_rw_blk. if not,
* asumme it has free buffers and check waiters
*/
if (q) {
/*
* we've released enough buffers to start I/O again
*/
if (waitqueue_active(&blk_buffers_wait)
&& atomic_read(&queued_sectors) < low_queued_sectors)
wake_up(&blk_buffers_wait);
/*
* Add to pending free list and batch wakeups
*/
list_add(&req->table, &q->pending_freelist[rw]);
if (++q->pending_free[rw] >= batch_requests) {
int wake_up = q->pending_free[rw];
blk_refill_freelist(q, rw);
wake_up_nr(&q->wait_for_request, wake_up);
}
}
}
/*
* Has to be called with the request spinlock acquired
*/
static void attempt_merge(request_queue_t * q,
struct request *req,
int max_sectors,
int max_segments)
{
struct request *next;
next = blkdev_next_request(req);
if (req->sector + req->nr_sectors != next->sector)
return;
if (req->cmd != next->cmd
|| req->rq_dev != next->rq_dev
|| req->nr_sectors + next->nr_sectors > max_sectors
|| next->sem)
return;
/*
* If we are not allowed to merge these requests, then
* return. If we are allowed to merge, then the count
* will have been updated to the appropriate number,
* and we shouldn't do it here too.
*/
if (!q->merge_requests_fn(q, req, next, max_segments))
return;
q->elevator.elevator_merge_req_fn(req, next);
req->bhtail->b_reqnext = next->bh;
req->bhtail = next->bhtail;
req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
list_del(&next->queue);
blkdev_release_request(next);
}
static inline void attempt_back_merge(request_queue_t * q,
struct request *req,
int max_sectors,
int max_segments)
{
if (&req->queue == q->queue_head.prev)
return;
attempt_merge(q, req, max_sectors, max_segments);
}
static inline void attempt_front_merge(request_queue_t * q,
struct list_head * head,
struct request *req,
int max_sectors,
int max_segments)
{
struct list_head * prev;
prev = req->queue.prev;
if (head == prev)
return;
attempt_merge(q, blkdev_entry_to_request(prev), max_sectors, max_segments);
}
static int __make_request(request_queue_t * q, int rw,
struct buffer_head * bh)
{
unsigned int sector, count;
int max_segments = MAX_SEGMENTS;
struct request * req, *freereq = NULL;
int rw_ahead, max_sectors, el_ret;
struct list_head *head, *insert_here;
int latency;
elevator_t *elevator = &q->elevator;
count = bh->b_size >> 9;
sector = bh->b_rsector;
rw_ahead = 0; /* normal case; gets changed below for READA */
switch (rw) {
case READA:
rw_ahead = 1;
rw = READ; /* drop into READ */
case READ:
case WRITE:
latency = elevator_request_latency(elevator, rw);
break;
default:
BUG();
goto end_io;
}
/* We'd better have a real physical mapping!
Check this bit only if the buffer was dirty and just locked
down by us so at this point flushpage will block and
won't clear the mapped bit under us. */
if (!buffer_mapped(bh))
BUG();
/*
* Temporary solution - in 2.5 this will be done by the lowlevel
* driver. Create a bounce buffer if the buffer data points into
* high memory - keep the original buffer otherwise.
*/
#if CONFIG_HIGHMEM
bh = create_bounce(rw, bh);
#endif
/* look for a free request. */
/*
* Try to coalesce the new request with old requests
*/
max_sectors = get_max_sectors(bh->b_rdev);
again:
req = NULL;
head = &q->queue_head;
/*
* Now we acquire the request spinlock, we have to be mega careful
* not to schedule or do something nonatomic
*/
spin_lock_irq(&io_request_lock);
insert_here = head->prev;
if (list_empty(head)) {
q->plug_device_fn(q, bh->b_rdev); /* is atomic */
goto get_rq;
} else if (q->head_active && !q->plugged)
head = head->next;
el_ret = elevator->elevator_merge_fn(q, &req, head, bh, rw,max_sectors);
switch (el_ret) {
case ELEVATOR_BACK_MERGE:
if (!q->back_merge_fn(q, req, bh, max_segments))
break;
elevator->elevator_merge_cleanup_fn(q, req, count);
req->bhtail->b_reqnext = bh;
req->bhtail = bh;
req->nr_sectors = req->hard_nr_sectors += count;
blk_started_io(count);
drive_stat_acct(req->rq_dev, req->cmd, count, 0);
attempt_back_merge(q, req, max_sectors, max_segments);
goto out;
case ELEVATOR_FRONT_MERGE:
if (!q->front_merge_fn(q, req, bh, max_segments))
break;
elevator->elevator_merge_cleanup_fn(q, req, count);
bh->b_reqnext = req->bh;
req->bh = bh;
req->buffer = bh->b_data;
req->current_nr_sectors = count;
req->sector = req->hard_sector = sector;
req->nr_sectors = req->hard_nr_sectors += count;
blk_started_io(count);
drive_stat_acct(req->rq_dev, req->cmd, count, 0);
attempt_front_merge(q, head, req, max_sectors, max_segments);
goto out;
/*
* elevator says don't/can't merge. get new request
*/
case ELEVATOR_NO_MERGE:
/*
* use elevator hints as to where to insert the
* request. if no hints, just add it to the back
* of the queue
*/
if (req)
insert_here = &req->queue;
break;
default:
printk("elevator returned crap (%d)\n", el_ret);
BUG();
}
/*
* Grab a free request from the freelist - if that is empty, check
* if we are doing read ahead and abort instead of blocking for
* a free slot.
*/
get_rq:
if (freereq) {
req = freereq;
freereq = NULL;
} else if ((req = get_request(q, rw)) == NULL) {
spin_unlock_irq(&io_request_lock);
if (rw_ahead)
goto end_io;
freereq = __get_request_wait(q, rw);
goto again;
}
/* fill up the request-info, and add it to the queue */
req->elevator_sequence = latency;
req->cmd = rw;
req->errors = 0;
req->hard_sector = req->sector = sector;
req->hard_nr_sectors = req->nr_sectors = count;
req->current_nr_sectors = count;
req->nr_segments = 1; /* Always 1 for a new request. */
req->nr_hw_segments = 1; /* Always 1 for a new request. */
req->buffer = bh->b_data;
req->sem = NULL;
req->bh = bh;
req->bhtail = bh;
req->rq_dev = bh->b_rdev;
blk_started_io(count);
add_request(q, req, insert_here);
out:
if (freereq)
blkdev_release_request(freereq);
spin_unlock_irq(&io_request_lock);
return 0;
end_io:
bh->b_end_io(bh, test_bit(BH_Uptodate, &bh->b_state));
return 0;
}
/**
* generic_make_request: hand a buffer head to it's device driver for I/O
* @rw: READ, WRITE, or READA - what sort of I/O is desired.
* @bh: The buffer head describing the location in memory and on the device.
*
* generic_make_request() is used to make I/O requests of block
* devices. It is passed a &struct buffer_head and a &rw value. The
* %READ and %WRITE options are (hopefully) obvious in meaning. The
* %READA value means that a read is required, but that the driver is
* free to fail the request if, for example, it cannot get needed
* resources immediately.
*
* generic_make_request() does not return any status. The
* success/failure status of the request, along with notification of
* completion, is delivered asynchronously through the bh->b_end_io
* function described (one day) else where.
*
* The caller of generic_make_request must make sure that b_page,
* b_addr, b_size are set to describe the memory buffer, that b_rdev
* and b_rsector are set to describe the device address, and the
* b_end_io and optionally b_private are set to describe how
* completion notification should be signaled. BH_Mapped should also
* be set (to confirm that b_dev and b_blocknr are valid).
*
* generic_make_request and the drivers it calls may use b_reqnext,
* and may change b_rdev and b_rsector. So the values of these fields
* should NOT be depended on after the call to generic_make_request.
* Because of this, the caller should record the device address
* information in b_dev and b_blocknr.
*
* Apart from those fields mentioned above, no other fields, and in
* particular, no other flags, are changed by generic_make_request or
* any lower level drivers.
* */
void generic_make_request (int rw, struct buffer_head * bh)
{
int major = MAJOR(bh->b_rdev);
request_queue_t *q;
if (!bh->b_end_io)
BUG();
if (blk_size[major]) {
unsigned long maxsector = (blk_size[major][MINOR(bh->b_rdev)] << 1) + 1;
unsigned long sector = bh->b_rsector;
unsigned int count = bh->b_size >> 9;
if (maxsector < count || maxsector - count < sector) {
bh->b_state &= (1 << BH_Lock) | (1 << BH_Mapped);
if (blk_size[major][MINOR(bh->b_rdev)]) {
/* This may well happen - the kernel calls bread()
without checking the size of the device, e.g.,
when mounting a device. */
printk(KERN_INFO
"attempt to access beyond end of device\n");
printk(KERN_INFO "%s: rw=%d, want=%ld, limit=%d\n",
kdevname(bh->b_rdev), rw,
(sector + count)>>1,
blk_size[major][MINOR(bh->b_rdev)]);
}
bh->b_end_io(bh, 0);
return;
}
}
/*
* Resolve the mapping until finished. (drivers are
* still free to implement/resolve their own stacking
* by explicitly returning 0)
*/
/* NOTE: we don't repeat the blk_size check for each new device.
* Stacking drivers are expected to know what they are doing.
*/
do {
q = blk_get_queue(bh->b_rdev);
if (!q) {
printk(KERN_ERR
"generic_make_request: Trying to access nonexistent block-device %s (%ld)\n",
kdevname(bh->b_rdev), bh->b_rsector);
buffer_IO_error(bh);
break;
}
} while (q->make_request_fn(q, rw, bh));
}
/**
* submit_bh: submit a buffer_head to the block device later for I/O
* @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
* @bh: The &struct buffer_head which describes the I/O
*
* submit_bh() is very similar in purpose to generic_make_request(), and
* uses that function to do most of the work.
*
* The extra functionality provided by submit_bh is to determine
* b_rsector from b_blocknr and b_size, and to set b_rdev from b_dev.
* This is is appropriate for IO requests that come from the buffer
* cache and page cache which (currently) always use aligned blocks.
*/
void submit_bh(int rw, struct buffer_head * bh)
{
int count = bh->b_size >> 9;
if (!test_bit(BH_Lock, &bh->b_state))
BUG();
set_bit(BH_Req, &bh->b_state);
/*
* First step, 'identity mapping' - RAID or LVM might
* further remap this.
*/
bh->b_rdev = bh->b_dev;
bh->b_rsector = bh->b_blocknr * count;
generic_make_request(rw, bh);
switch (rw) {
case WRITE:
kstat.pgpgout += count;
break;
default:
kstat.pgpgin += count;
break;
}
}
/*
* Default IO end handler, used by "ll_rw_block()".
*/
static void end_buffer_io_sync(struct buffer_head *bh, int uptodate)
{
mark_buffer_uptodate(bh, uptodate);
unlock_buffer(bh);
}
/**
* ll_rw_block: low-level access to block devices
* @rw: whether to %READ or %WRITE or maybe %READA (readahead)
* @nr: number of &struct buffer_heads in the array
* @bhs: array of pointers to &struct buffer_head
*
* ll_rw_block() takes an array of pointers to &struct buffer_heads,
* and requests an I/O operation on them, either a %READ or a %WRITE.
* The third %READA option is described in the documentation for
* generic_make_request() which ll_rw_block() calls.
*
* This function provides extra functionality that is not in
* generic_make_request() that is relevant to buffers in the buffer
* cache or page cache. In particular it drops any buffer that it
* cannot get a lock on (with the BH_Lock state bit), any buffer that
* appears to be clean when doing a write request, and any buffer that
* appears to be up-to-date when doing read request. Further it marks
* as clean buffers that are processed for writing (the buffer cache
* wont assume that they are actually clean until the buffer gets
* unlocked).
*
* ll_rw_block sets b_end_io to simple completion handler that marks
* the buffer up-to-date (if approriate), unlocks the buffer and wakes
* any waiters. As client that needs a more interesting completion
* routine should call submit_bh() (or generic_make_request())
* directly.
*
* Caveat:
* All of the buffers must be for the same device, and must also be
* of the current approved size for the device. */
void ll_rw_block(int rw, int nr, struct buffer_head * bhs[])
{
unsigned int major;
int correct_size;
int i;
if (!nr)
return;
major = MAJOR(bhs[0]->b_dev);
/* Determine correct block size for this device. */
correct_size = BLOCK_SIZE;
if (blksize_size[major]) {
i = blksize_size[major][MINOR(bhs[0]->b_dev)];
if (i)
correct_size = i;
}
/* Verify requested block sizes. */
for (i = 0; i < nr; i++) {
struct buffer_head *bh = bhs[i];
if (bh->b_size % correct_size) {
printk(KERN_NOTICE "ll_rw_block: device %s: "
"only %d-char blocks implemented (%u)\n",
kdevname(bhs[0]->b_dev),
correct_size, bh->b_size);
goto sorry;
}
}
if ((rw & WRITE) && is_read_only(bhs[0]->b_dev)) {
printk(KERN_NOTICE "Can't write to read-only device %s\n",
kdevname(bhs[0]->b_dev));
goto sorry;
}
for (i = 0; i < nr; i++) {
struct buffer_head *bh = bhs[i];
/*
* don't lock any more buffers if we are above the high
* water mark. instead start I/O on the queued stuff.
*/
if (atomic_read(&queued_sectors) >= high_queued_sectors) {
run_task_queue(&tq_disk);
wait_event(blk_buffers_wait,
atomic_read(&queued_sectors) < low_queued_sectors);
}
/* Only one thread can actually submit the I/O. */
if (test_and_set_bit(BH_Lock, &bh->b_state))
continue;
/* We have the buffer lock */
bh->b_end_io = end_buffer_io_sync;
switch(rw) {
case WRITE:
if (!atomic_set_buffer_clean(bh))
/* Hmmph! Nothing to write */
goto end_io;
__mark_buffer_clean(bh);
break;
case READA:
case READ:
if (buffer_uptodate(bh))
/* Hmmph! Already have it */
goto end_io;
break;
default:
BUG();
end_io:
bh->b_end_io(bh, test_bit(BH_Uptodate, &bh->b_state));
continue;
}
submit_bh(rw, bh);
}
return;
sorry:
/* Make sure we don't get infinite dirty retries.. */
for (i = 0; i < nr; i++)
mark_buffer_clean(bhs[i]);
}
#ifdef CONFIG_STRAM_SWAP
extern int stram_device_init (void);
#endif
/**
* end_that_request_first - end I/O on one buffer.
* @req: the request being processed
* @uptodate: 0 for I/O error
* @name: the name printed for an I/O error
*
* Description:
* Ends I/O on the first buffer attached to @req, and sets it up
* for the next buffer_head (if any) in the cluster.
*
* Return:
* 0 - we are done with this request, call end_that_request_last()
* 1 - still buffers pending for this request
*
* Caveat:
* Drivers implementing their own end_request handling must call
* blk_finished_io() appropriately.
**/
int end_that_request_first (struct request *req, int uptodate, char *name)
{
struct buffer_head * bh;
int nsect;
req->errors = 0;
if (!uptodate)
printk("end_request: I/O error, dev %s (%s), sector %lu\n",
kdevname(req->rq_dev), name, req->sector);
if ((bh = req->bh) != NULL) {
nsect = bh->b_size >> 9;
blk_finished_io(nsect);
req->bh = bh->b_reqnext;
bh->b_reqnext = NULL;
bh->b_end_io(bh, uptodate);
if ((bh = req->bh) != NULL) {
req->hard_sector += nsect;
req->hard_nr_sectors -= nsect;
req->sector = req->hard_sector;
req->nr_sectors = req->hard_nr_sectors;
req->current_nr_sectors = bh->b_size >> 9;
if (req->nr_sectors < req->current_nr_sectors) {
req->nr_sectors = req->current_nr_sectors;
printk("end_request: buffer-list destroyed\n");
}
req->buffer = bh->b_data;
return 1;
}
}
return 0;
}
void end_that_request_last(struct request *req)
{
if (req->sem != NULL)
up(req->sem);
blkdev_release_request(req);
}
#define MB(kb) ((kb) << 10)
int __init blk_dev_init(void)
{
struct blk_dev_struct *dev;
int total_ram;
request_cachep = kmem_cache_create("blkdev_requests",
sizeof(struct request),
0, SLAB_HWCACHE_ALIGN, NULL, NULL);
if (!request_cachep)
panic("Can't create request pool slab cache\n");
for (dev = blk_dev + MAX_BLKDEV; dev-- != blk_dev;)
dev->queue = NULL;
memset(ro_bits,0,sizeof(ro_bits));
memset(max_readahead, 0, sizeof(max_readahead));
memset(max_sectors, 0, sizeof(max_sectors));
atomic_set(&queued_sectors, 0);
total_ram = nr_free_pages() << (PAGE_SHIFT - 10);
/*
* Try to keep 128MB max hysteris. If not possible,
* use half of RAM
*/
high_queued_sectors = (total_ram * 2) / 3;
low_queued_sectors = high_queued_sectors / 3;
if (high_queued_sectors - low_queued_sectors > MB(128))
low_queued_sectors = high_queued_sectors - MB(128);
/*
* make it sectors (512b)
*/
high_queued_sectors <<= 1;
low_queued_sectors <<= 1;
/*
* Scale free request slots per queue too
*/
total_ram = (total_ram + MB(32) - 1) & ~(MB(32) - 1);
if ((queue_nr_requests = total_ram >> 9) > QUEUE_NR_REQUESTS)
queue_nr_requests = QUEUE_NR_REQUESTS;
/*
* adjust batch frees according to queue length, with upper limit
*/
if ((batch_requests = queue_nr_requests >> 3) > 32)
batch_requests = 32;
printk("block: queued sectors max/low %dkB/%dkB, %d slots per queue\n",
high_queued_sectors / 2,
low_queued_sectors / 2,
queue_nr_requests);
#ifdef CONFIG_AMIGA_Z2RAM
z2_init();
#endif
#ifdef CONFIG_STRAM_SWAP
stram_device_init();
#endif
#ifdef CONFIG_BLK_DEV_RAM
rd_init();
#endif
#ifdef CONFIG_ISP16_CDI
isp16_init();
#endif
#if defined(CONFIG_IDE) && defined(CONFIG_BLK_DEV_IDE)
ide_init(); /* this MUST precede hd_init */
#endif
#if defined(CONFIG_IDE) && defined(CONFIG_BLK_DEV_HD)
hd_init();
#endif
#ifdef CONFIG_BLK_DEV_PS2
ps2esdi_init();
#endif
#ifdef CONFIG_BLK_DEV_XD
xd_init();
#endif
#ifdef CONFIG_BLK_DEV_MFM
mfm_init();
#endif
#ifdef CONFIG_PARIDE
{ extern void paride_init(void); paride_init(); };
#endif
#ifdef CONFIG_MAC_FLOPPY
swim3_init();
#endif
#ifdef CONFIG_BLK_DEV_SWIM_IOP
swimiop_init();
#endif
#ifdef CONFIG_AMIGA_FLOPPY
amiga_floppy_init();
#endif
#ifdef CONFIG_ATARI_FLOPPY
atari_floppy_init();
#endif
#ifdef CONFIG_BLK_DEV_FD
floppy_init();
#else
#if defined(__i386__) /* Do we even need this? */
outb_p(0xc, 0x3f2);
#endif
#endif
#ifdef CONFIG_CDU31A
cdu31a_init();
#endif
#ifdef CONFIG_ATARI_ACSI
acsi_init();
#endif
#ifdef CONFIG_MCD
mcd_init();
#endif
#ifdef CONFIG_MCDX
mcdx_init();
#endif
#ifdef CONFIG_SBPCD
sbpcd_init();
#endif
#ifdef CONFIG_AZTCD
aztcd_init();
#endif
#ifdef CONFIG_CDU535
sony535_init();
#endif
#ifdef CONFIG_GSCD
gscd_init();
#endif
#ifdef CONFIG_CM206
cm206_init();
#endif
#ifdef CONFIG_OPTCD
optcd_init();
#endif
#ifdef CONFIG_SJCD
sjcd_init();
#endif
#ifdef CONFIG_APBLOCK
ap_init();
#endif
#ifdef CONFIG_DDV
ddv_init();
#endif
#ifdef CONFIG_BLK_DEV_NBD
nbd_init();
#endif
#ifdef CONFIG_MDISK
mdisk_init();
#endif
#ifdef CONFIG_DASD
dasd_init();
#endif
#ifdef CONFIG_SUN_JSFLASH
jsfd_init();
#endif
return 0;
};
EXPORT_SYMBOL(io_request_lock);
EXPORT_SYMBOL(end_that_request_first);
EXPORT_SYMBOL(end_that_request_last);
EXPORT_SYMBOL(blk_init_queue);
EXPORT_SYMBOL(blk_get_queue);
EXPORT_SYMBOL(__blk_get_queue);
EXPORT_SYMBOL(blk_cleanup_queue);
EXPORT_SYMBOL(blk_queue_headactive);
EXPORT_SYMBOL(blk_queue_pluggable);
EXPORT_SYMBOL(blk_queue_make_request);
EXPORT_SYMBOL(generic_make_request);
EXPORT_SYMBOL(blkdev_release_request);
EXPORT_SYMBOL(generic_unplug_device);
EXPORT_SYMBOL(queued_sectors);
|