summaryrefslogtreecommitdiffstats
path: root/drivers/char/random.c
blob: 6b8a2f12b09a60998ac6a2f065acbef21ac42608 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
/*
 * random.c -- A strong random number generator
 *
 * Version 1.03, last modified 26-Apr-97
 * 
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 * 
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 * 
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....) 
 * 
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 * 
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 * 
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 * 
 * When random bytes are desired, they are obtained by taking the MD5
 * hash of the contents of the "entropy pool".  The MD5 hash avoids
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
 * about the input of MD5 from its output.  Even if it is possible to
 * analyze MD5 in some clever way, as long as the amount of data
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 * 
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
 * outputs.  This requires successful cryptanalysis of MD5, which is
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 * 
 * Exported interfaces ---- output
 * ===============================
 * 
 * There are three exported interfaces; the first is one designed to
 * be used from within the kernel:
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.
 * 
 * The two other interfaces are two character devices /dev/random and
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 * 
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
 * Exported interfaces ---- input
 * ==============================
 * 
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 * 
 * 	void add_keyboard_randomness(unsigned char scancode);
 * 	void add_mouse_randomness(__u32 mouse_data);
 * 	void add_interrupt_randomness(int irq);
 * 	void add_blkdev_randomness(int irq);
 * 
 * add_keyboard_randomness() uses the inter-keypress timing, as well as the
 * scancode as random inputs into the "entropy pool".
 * 
 * add_mouse_randomness() uses the mouse interrupt timing, as well as
 * the reported position of the mouse from the hardware.
 *
 * add_interrupt_randomness() uses the inter-interrupt timing as random
 * inputs to the entropy pool.  Note that not all interrupts are good
 * sources of randomness!  For example, the timer interrupts is not a
 * good choice, because the periodicity of the interrupts is to
 * regular, and hence predictable to an attacker.  Disk interrupts are
 * a better measure, since the timing of the disk interrupts are more
 * unpredictable.
 * 
 * add_blkdev_randomness() times the finishing time of block requests.
 * 
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
 * Ensuring unpredictability at system startup
 * ============================================
 * 
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence: 
 *
 *	echo "Initializing random number generator..."
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save 512 bytes, which is the size of the entropy pool
 * 	if [ -f /etc/random-seed ]; then
 *		cat /etc/random-seed >/dev/urandom
 * 	fi
 *	dd if=/dev/urandom of=/etc/random-seed count=1
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 * 
 *	# Carry a random seed from shut-down to start-up
 *	# Save 512 bytes, which is the size of the entropy pool
 *	echo "Saving random seed..."
 *	dd if=/dev/urandom of=/etc/random-seed count=1
 * 
 * For example, on many Linux systems, the appropriate scripts are
 * usually /etc/rc.d/rc.local and /etc/rc.d/rc.0, respectively.
 * 
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 * 
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from the Pretty Good Privacy's random number generator, and from
 * private discussions with Phil Karn.  Colin Plumb provided a faster
 * random number generator, which speed up the mixing function of the
 * entropy pool, taken from PGP 3.0 (under development).  It has since
 * been modified by myself to provide better mixing in the case where
 * the input values to add_entropy_word() are mostly small numbers.
 * Dale Worley has also contributed many useful ideas and suggestions
 * to improve this driver.
 * 
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 * 
 * The code for MD5 transform was taken from Colin Plumb's
 * implementation, which has been placed in the public domain.  The
 * MD5 cryptographic checksum was devised by Ronald Rivest, and is
 * documented in RFC 1321, "The MD5 Message Digest Algorithm".
 * 
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

#include <linux/utsname.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/malloc.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>

#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>

/*
 * Configuration information
 */
#undef RANDOM_BENCHMARK
#undef BENCHMARK_NOINT

/*
 * The pool is stirred with a primitive polynomial of degree 128
 * over GF(2), namely x^128 + x^99 + x^59 + x^31 + x^9 + x^7 + 1.
 * For a pool of size 64, try x^64+x^62+x^38+x^10+x^6+x+1.
 */
#define POOLWORDS 128    /* Power of 2 - note that this is 32-bit words */
#define POOLBITS (POOLWORDS*32)
#if POOLWORDS == 128
#define TAP1    99     /* The polynomial taps */
#define TAP2    59
#define TAP3    31
#define TAP4    9
#define TAP5    7
#elif POOLWORDS == 64
#define TAP1    62      /* The polynomial taps */
#define TAP2    38
#define TAP3    10
#define TAP4    6
#define TAP5    1
#else
#error No primitive polynomial available for chosen POOLWORDS
#endif

/*
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a twisted Generalized Feedback Shift Reigster
 *
 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
 * Transactions on Modeling and Computer Simulation 2(3):179-194.
 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.  (Note that the behavior
 * of the 1.0 version of the driver was equivalent to using a second
 * element of 0x80000000).
 */
static __u32 twist_table[2] = { 0, 0xEDB88320 };

/*
 * The minimum number of bits to release a "wait on input".  Should
 * probably always be 8, since a /dev/random read can return a single
 * byte.
 */
#define WAIT_INPUT_BITS 8
/* 
 * The limit number of bits under which to release a "wait on
 * output".  Should probably always be the same as WAIT_INPUT_BITS, so
 * that an output wait releases when and only when a wait on input
 * would block.
 */
#define WAIT_OUTPUT_BITS WAIT_INPUT_BITS

/* There is actually only one of these, globally. */
struct random_bucket {
	unsigned add_ptr;
	unsigned entropy_count;
	int input_rotate;
	__u32 pool[POOLWORDS];
};

#ifdef RANDOM_BENCHMARK
/* For benchmarking only */
struct random_benchmark {
	unsigned long long 	start_time;
	int			times;		/* # of samples */
	unsigned long		min;
	unsigned long		max;
	unsigned long		accum;		/* accumulator for average */
	const char		*descr;
	int			unit;
	unsigned long		flags;
};

#define BENCHMARK_INTERVAL 500

static void initialize_benchmark(struct random_benchmark *bench,
				 const char *descr, int unit);
static void begin_benchmark(struct random_benchmark *bench);
static void end_benchmark(struct random_benchmark *bench);

struct random_benchmark timer_benchmark;
#endif

/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long	last_time;
	int 		last_delta,last_delta2;
	int		dont_count_entropy:1;
};

static struct random_bucket random_state;
static struct timer_rand_state keyboard_timer_state;
static struct timer_rand_state mouse_timer_state;
static struct timer_rand_state extract_timer_state;
static struct timer_rand_state *irq_timer_state[NR_IRQS];
static struct timer_rand_state *blkdev_timer_state[MAX_BLKDEV];
static struct wait_queue *random_read_wait;
static struct wait_queue *random_write_wait;

static ssize_t random_read(struct file * file, char * buf,
			   size_t nbytes, loff_t *ppos);
static ssize_t random_read_unlimited(struct file * file, char * buf,
				     size_t nbytes, loff_t *ppos);
static unsigned int random_poll(struct file *file, poll_table * wait);
static ssize_t random_write(struct file * file, const char * buffer,
			    size_t count, loff_t *ppos);
static int random_ioctl(struct inode * inode, struct file * file,
			unsigned int cmd, unsigned long arg);

static inline void fast_add_entropy_word(struct random_bucket *r,
					 const __u32 input);

static void add_entropy_word(struct random_bucket *r,
				    const __u32 input);

#ifndef MIN
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#endif

/*
 * Unfortunately, while the GCC optimizer for the i386 understands how
 * to optimize a static rotate left of x bits, it doesn't know how to
 * deal with a variable rotate of x bits.  So we use a bit of asm magic.
 */
#if (!defined (__i386__))
extern inline __u32 rotate_left(int i, __u32 word)
{
	return (word << i) | (word >> (32 - i));
	
}
#else
extern inline __u32 rotate_left(int i, __u32 word)
{
	__asm__("roll %%cl,%0"
		:"=r" (word)
		:"0" (word),"c" (i));
	return word;
}
#endif

/*
 * More asm magic....
 * 
 * For entropy estimation, we need to do an integral base 2
 * logarithm.  By default, use an open-coded C version, although we do
 * have a version which takes advantage of the Intel's x86's "bsr"
 * instruction.
 */
#if (!defined (__i386__))
static inline __u32 int_ln(__u32 word)
{
	__u32 nbits = 0;
	
	while (1) {
		word >>= 1;
		if (!word)
			break;
		nbits++;
	}
	return nbits;
}
#else
static inline __u32 int_ln(__u32 word)
{
	__asm__("bsrl %1,%0\n\t"
		"jnz 1f\n\t"
		"movl $0,%0\n"
		"1:"
		:"=r" (word)
		:"r" (word));
	return word;
}
#endif

	
/*
 * Initialize the random pool with standard stuff.
 *
 * NOTE: This is an OS-dependent function.
 */
static void init_std_data(struct random_bucket *r)
{
	__u32 word, *p;
	int i;
	struct timeval 	tv;

	do_gettimeofday(&tv);
	add_entropy_word(r, tv.tv_sec);
	add_entropy_word(r, tv.tv_usec);

	for (p = (__u32 *) &system_utsname,
	     i = sizeof(system_utsname) / sizeof(__u32);
	     i ; i--, p++) {
		memcpy(&word, p, sizeof(__u32));
		add_entropy_word(r, word);
	}
	
}

/* Clear the entropy pool and associated counters. */
static void rand_clear_pool(void)
{
	memset(&random_state, 0, sizeof(random_state));
	init_std_data(&random_state);
}

__initfunc(void rand_initialize(void))
{
	int i;

	rand_clear_pool();
	for (i = 0; i < NR_IRQS; i++)
		irq_timer_state[i] = NULL;
	for (i = 0; i < MAX_BLKDEV; i++)
		blkdev_timer_state[i] = NULL;
	memset(&keyboard_timer_state, 0, sizeof(struct timer_rand_state));
	memset(&mouse_timer_state, 0, sizeof(struct timer_rand_state));
	memset(&extract_timer_state, 0, sizeof(struct timer_rand_state));
#ifdef RANDOM_BENCHMARK
	initialize_benchmark(&timer_benchmark, "timer", 0);
#endif
	extract_timer_state.dont_count_entropy = 1;
	random_read_wait = NULL;
	random_write_wait = NULL;
}

void rand_initialize_irq(int irq)
{
	struct timer_rand_state *state;
	
	if (irq >= NR_IRQS || irq_timer_state[irq])
		return;

	/*
	 * If kmalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		irq_timer_state[irq] = state;
		memset(state, 0, sizeof(struct timer_rand_state));
	}
}

void rand_initialize_blkdev(int major, int mode)
{
	struct timer_rand_state *state;
	
	if (major >= MAX_BLKDEV || blkdev_timer_state[major])
		return;

	/*
	 * If kmalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kmalloc(sizeof(struct timer_rand_state), mode);
	if (state) {
		blkdev_timer_state[major] = state;
		memset(state, 0, sizeof(struct timer_rand_state));
	}
}

/*
 * This function adds a byte into the entropy "pool".  It does not
 * update the entropy estimate.  The caller must do this if appropriate.
 *
 * The pool is stirred with a primitive polynomial of degree 128
 * over GF(2), namely x^128 + x^99 + x^59 + x^31 + x^9 + x^7 + 1.
 * For a pool of size 64, try x^64+x^62+x^38+x^10+x^6+x+1.
 * 
 * We rotate the input word by a changing number of bits, to help
 * assure that all bits in the entropy get toggled.  Otherwise, if we
 * consistently feed the entropy pool small numbers (like jiffies and
 * scancodes, for example), the upper bits of the entropy pool don't
 * get affected. --- TYT, 10/11/95
 */
static inline void fast_add_entropy_word(struct random_bucket *r,
					 const __u32 input)
{
	unsigned i;
	int new_rotate;
	__u32 w;

	/*
	 * Normally, we add 7 bits of rotation to the pool.  At the
	 * beginning of the pool, add an extra 7 bits rotation, so
	 * that successive passes spread the input bits across the
	 * pool evenly.
	 */
	new_rotate = r->input_rotate + 14;
	if ((i = r->add_ptr--))
		new_rotate -= 7;
	r->input_rotate = new_rotate & 31;

	w = rotate_left(r->input_rotate, input);
	
	/* XOR in the various taps */
	w ^= r->pool[(i+TAP1)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP2)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP3)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP4)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP5)&(POOLWORDS-1)];
	w ^= r->pool[i&(POOLWORDS-1)];
	/* Use a twisted GFSR for the mixing operation */
	r->pool[i&(POOLWORDS-1)] = (w >> 1) ^ twist_table[w & 1];
}

/*
 * For places where we don't need the inlined version
 */
static void add_entropy_word(struct random_bucket *r,
				    const __u32 input)
{
	fast_add_entropy_word(r, input);
}

/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 * On the i386, this is assumed to be at most 16 bits, and the high bits
 * are used for a high-resolution timer.
 *
 */
static void add_timer_randomness(struct random_bucket *r,
				 struct timer_rand_state *state, unsigned num)
{
	int	delta, delta2, delta3;
	__u32		time;

#ifdef RANDOM_BENCHMARK
	begin_benchmark(&timer_benchmark);
#endif
#if defined (__i386__)
	if (x86_capability & 16) {
		unsigned long low, high;
		__asm__(".byte 0x0f,0x31"
			:"=a" (low), "=d" (high));
		time = (__u32) low;
		num ^= (__u32) high;
	} else {
		time = jiffies;
	}
#else
	time = jiffies;
#endif

	fast_add_entropy_word(r, (__u32) num);
	fast_add_entropy_word(r, time);
	
	/*
	 * Calculate number of bits of randomness we probably
	 * added.  We take into account the first and second order
	 * deltas in order to make our estimate.
	 */
	if (!state->dont_count_entropy &&
	    (r->entropy_count < POOLBITS)) {
		delta = time - state->last_time;
		state->last_time = time;
		if (delta < 0) delta = -delta;

		delta2 = delta - state->last_delta;
		state->last_delta = delta;
		if (delta2 < 0) delta2 = -delta2;

		delta3 = delta2 - state->last_delta2;
		state->last_delta2 = delta2;
		if (delta3 < 0) delta3 = -delta3;

		delta = MIN(MIN(delta, delta2), delta3) >> 1;
		/* Limit entropy estimate to 12 bits */
		delta &= (1 << 12) - 1;

		r->entropy_count += int_ln(delta);

		/* Prevent overflow */
		if (r->entropy_count > POOLBITS)
			r->entropy_count = POOLBITS;
	}
		
	/* Wake up waiting processes, if we have enough entropy. */
	if (r->entropy_count >= WAIT_INPUT_BITS)
		wake_up_interruptible(&random_read_wait);
#ifdef RANDOM_BENCHMARK
	end_benchmark(&timer_benchmark);
#endif
}

void add_keyboard_randomness(unsigned char scancode)
{
	add_timer_randomness(&random_state, &keyboard_timer_state, scancode);
}

void add_mouse_randomness(__u32 mouse_data)
{
	add_timer_randomness(&random_state, &mouse_timer_state, mouse_data);
}

void add_interrupt_randomness(int irq)
{
	if (irq >= NR_IRQS || irq_timer_state[irq] == 0)
		return;

	add_timer_randomness(&random_state, irq_timer_state[irq], 0x100+irq);
}

void add_blkdev_randomness(int major)
{
	if (major >= MAX_BLKDEV)
		return;

	if (blkdev_timer_state[major] == 0) {
		rand_initialize_blkdev(major, GFP_ATOMIC);
		if (blkdev_timer_state[major] == 0)
			return;
	}
		
	add_timer_randomness(&random_state, blkdev_timer_state[major],
			     0x200+major);
}

#define USE_SHA

#ifdef USE_SHA

#define SMALL_VERSION		/* Optimize for space over time */

#define HASH_BUFFER_SIZE 5
#define HASH_TRANSFORM SHATransform

/*
 * SHA transform algorithm, taken from code written by Peter Gutman,
 * and apparently in the public domain.
 */

/* The SHA f()-functions.  */

#define f1(x,y,z)   ( z ^ ( x & ( y ^ z ) ) )           /* Rounds  0-19 */
#define f2(x,y,z)   ( x ^ y ^ z )                       /* Rounds 20-39 */
#define f3(x,y,z)   ( ( x & y ) | ( z & ( x | y ) ) )   /* Rounds 40-59 */
#define f4(x,y,z)   ( x ^ y ^ z )                       /* Rounds 60-79 */

/* The SHA Mysterious Constants */

#define K1  0x5A827999L                                 /* Rounds  0-19 */
#define K2  0x6ED9EBA1L                                 /* Rounds 20-39 */
#define K3  0x8F1BBCDCL                                 /* Rounds 40-59 */
#define K4  0xCA62C1D6L                                 /* Rounds 60-79 */

#define ROTL(n,X)  ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) )

#define expand(W,i) ( W[ i & 15 ] = \
		     ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
			        W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )

#define subRound(a, b, c, d, e, f, k, data) \
    ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )


static void SHATransform(__u32 *digest, __u32 *data)
    {
    __u32 A, B, C, D, E;     /* Local vars */
    __u32 eData[ 16 ];       /* Expanded data */
#ifdef SMALL_VERSION
    int	i;
    __u32 TEMP;
#endif

    /* Set up first buffer and local data buffer */
    A = digest[ 0 ];
    B = digest[ 1 ];
    C = digest[ 2 ];
    D = digest[ 3 ];
    E = digest[ 4 ];
    memcpy( eData, data, 16*sizeof(__u32));

#ifdef SMALL_VERSION
    /*
     * Approximately 50% of the speed of the optimized version, but
     * takes up 1/16 the space.  Saves about 6k on an i386 kernel.
     */
    for (i=0; i < 80; i++) {
	    if (i < 20)
		    TEMP = f1(B, C, D) + K1;
	    else if (i < 40)
		    TEMP = f2(B, C, D) + K2;
	    else if (i < 60)
		    TEMP = f3(B, C, D) + K3;
	    else
		    TEMP = f4(B, C, D) + K4;
	    TEMP += ROTL (5, A) + E +
		    ((i > 15) ? expand(eData, i) : eData[i]);
	    E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
    }
#else
    /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
    subRound( A, B, C, D, E, f1, K1, eData[  0 ] );
    subRound( E, A, B, C, D, f1, K1, eData[  1 ] );
    subRound( D, E, A, B, C, f1, K1, eData[  2 ] );
    subRound( C, D, E, A, B, f1, K1, eData[  3 ] );
    subRound( B, C, D, E, A, f1, K1, eData[  4 ] );
    subRound( A, B, C, D, E, f1, K1, eData[  5 ] );
    subRound( E, A, B, C, D, f1, K1, eData[  6 ] );
    subRound( D, E, A, B, C, f1, K1, eData[  7 ] );
    subRound( C, D, E, A, B, f1, K1, eData[  8 ] );
    subRound( B, C, D, E, A, f1, K1, eData[  9 ] );
    subRound( A, B, C, D, E, f1, K1, eData[ 10 ] );
    subRound( E, A, B, C, D, f1, K1, eData[ 11 ] );
    subRound( D, E, A, B, C, f1, K1, eData[ 12 ] );
    subRound( C, D, E, A, B, f1, K1, eData[ 13 ] );
    subRound( B, C, D, E, A, f1, K1, eData[ 14 ] );
    subRound( A, B, C, D, E, f1, K1, eData[ 15 ] );
    subRound( E, A, B, C, D, f1, K1, expand( eData, 16 ) );
    subRound( D, E, A, B, C, f1, K1, expand( eData, 17 ) );
    subRound( C, D, E, A, B, f1, K1, expand( eData, 18 ) );
    subRound( B, C, D, E, A, f1, K1, expand( eData, 19 ) );

    subRound( A, B, C, D, E, f2, K2, expand( eData, 20 ) );
    subRound( E, A, B, C, D, f2, K2, expand( eData, 21 ) );
    subRound( D, E, A, B, C, f2, K2, expand( eData, 22 ) );
    subRound( C, D, E, A, B, f2, K2, expand( eData, 23 ) );
    subRound( B, C, D, E, A, f2, K2, expand( eData, 24 ) );
    subRound( A, B, C, D, E, f2, K2, expand( eData, 25 ) );
    subRound( E, A, B, C, D, f2, K2, expand( eData, 26 ) );
    subRound( D, E, A, B, C, f2, K2, expand( eData, 27 ) );
    subRound( C, D, E, A, B, f2, K2, expand( eData, 28 ) );
    subRound( B, C, D, E, A, f2, K2, expand( eData, 29 ) );
    subRound( A, B, C, D, E, f2, K2, expand( eData, 30 ) );
    subRound( E, A, B, C, D, f2, K2, expand( eData, 31 ) );
    subRound( D, E, A, B, C, f2, K2, expand( eData, 32 ) );
    subRound( C, D, E, A, B, f2, K2, expand( eData, 33 ) );
    subRound( B, C, D, E, A, f2, K2, expand( eData, 34 ) );
    subRound( A, B, C, D, E, f2, K2, expand( eData, 35 ) );
    subRound( E, A, B, C, D, f2, K2, expand( eData, 36 ) );
    subRound( D, E, A, B, C, f2, K2, expand( eData, 37 ) );
    subRound( C, D, E, A, B, f2, K2, expand( eData, 38 ) );
    subRound( B, C, D, E, A, f2, K2, expand( eData, 39 ) );

    subRound( A, B, C, D, E, f3, K3, expand( eData, 40 ) );
    subRound( E, A, B, C, D, f3, K3, expand( eData, 41 ) );
    subRound( D, E, A, B, C, f3, K3, expand( eData, 42 ) );
    subRound( C, D, E, A, B, f3, K3, expand( eData, 43 ) );
    subRound( B, C, D, E, A, f3, K3, expand( eData, 44 ) );
    subRound( A, B, C, D, E, f3, K3, expand( eData, 45 ) );
    subRound( E, A, B, C, D, f3, K3, expand( eData, 46 ) );
    subRound( D, E, A, B, C, f3, K3, expand( eData, 47 ) );
    subRound( C, D, E, A, B, f3, K3, expand( eData, 48 ) );
    subRound( B, C, D, E, A, f3, K3, expand( eData, 49 ) );
    subRound( A, B, C, D, E, f3, K3, expand( eData, 50 ) );
    subRound( E, A, B, C, D, f3, K3, expand( eData, 51 ) );
    subRound( D, E, A, B, C, f3, K3, expand( eData, 52 ) );
    subRound( C, D, E, A, B, f3, K3, expand( eData, 53 ) );
    subRound( B, C, D, E, A, f3, K3, expand( eData, 54 ) );
    subRound( A, B, C, D, E, f3, K3, expand( eData, 55 ) );
    subRound( E, A, B, C, D, f3, K3, expand( eData, 56 ) );
    subRound( D, E, A, B, C, f3, K3, expand( eData, 57 ) );
    subRound( C, D, E, A, B, f3, K3, expand( eData, 58 ) );
    subRound( B, C, D, E, A, f3, K3, expand( eData, 59 ) );

    subRound( A, B, C, D, E, f4, K4, expand( eData, 60 ) );
    subRound( E, A, B, C, D, f4, K4, expand( eData, 61 ) );
    subRound( D, E, A, B, C, f4, K4, expand( eData, 62 ) );
    subRound( C, D, E, A, B, f4, K4, expand( eData, 63 ) );
    subRound( B, C, D, E, A, f4, K4, expand( eData, 64 ) );
    subRound( A, B, C, D, E, f4, K4, expand( eData, 65 ) );
    subRound( E, A, B, C, D, f4, K4, expand( eData, 66 ) );
    subRound( D, E, A, B, C, f4, K4, expand( eData, 67 ) );
    subRound( C, D, E, A, B, f4, K4, expand( eData, 68 ) );
    subRound( B, C, D, E, A, f4, K4, expand( eData, 69 ) );
    subRound( A, B, C, D, E, f4, K4, expand( eData, 70 ) );
    subRound( E, A, B, C, D, f4, K4, expand( eData, 71 ) );
    subRound( D, E, A, B, C, f4, K4, expand( eData, 72 ) );
    subRound( C, D, E, A, B, f4, K4, expand( eData, 73 ) );
    subRound( B, C, D, E, A, f4, K4, expand( eData, 74 ) );
    subRound( A, B, C, D, E, f4, K4, expand( eData, 75 ) );
    subRound( E, A, B, C, D, f4, K4, expand( eData, 76 ) );
    subRound( D, E, A, B, C, f4, K4, expand( eData, 77 ) );
    subRound( C, D, E, A, B, f4, K4, expand( eData, 78 ) );
    subRound( B, C, D, E, A, f4, K4, expand( eData, 79 ) );
#endif /* SMALL_VERSION */

    /* Build message digest */
    digest[ 0 ] += A;
    digest[ 1 ] += B;
    digest[ 2 ] += C;
    digest[ 3 ] += D;
    digest[ 4 ] += E;
    }

#undef ROTL
#undef f1
#undef f2
#undef f3
#undef f4
#undef K1	
#undef K2
#undef K3	
#undef K4	
#undef expand
#undef subRound
	
#else
#define HASH_BUFFER_SIZE 4
#define HASH_TRANSFORM MD5Transform
	
/*
 * MD5 transform algorithm, taken from code written by Colin Plumb,
 * and put into the public domain
 *
 * QUESTION: Replace this with SHA, which as generally received better
 * reviews from the cryptographic community?
 */

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
static void MD5Transform(__u32 buf[4],
			 __u32 const in[16])
{
	__u32 a, b, c, d;

	a = buf[0];
	b = buf[1];
	c = buf[2];
	d = buf[3];

	MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478,  7);
	MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
	MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
	MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
	MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf,  7);
	MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
	MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
	MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
	MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8,  7);
	MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
	MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
	MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
	MD5STEP(F1, a, b, c, d, in[12]+0x6b901122,  7);
	MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
	MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
	MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);

	MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562,  5);
	MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340,  9);
	MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
	MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
	MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d,  5);
	MD5STEP(F2, d, a, b, c, in[10]+0x02441453,  9);
	MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
	MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
	MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6,  5);
	MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6,  9);
	MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
	MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
	MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905,  5);
	MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8,  9);
	MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
	MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);

	MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942,  4);
	MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
	MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
	MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
	MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44,  4);
	MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
	MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
	MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
	MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6,  4);
	MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
	MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
	MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
	MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039,  4);
	MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
	MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
	MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);

	MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244,  6);
	MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
	MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
	MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
	MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3,  6);
	MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
	MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
	MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
	MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f,  6);
	MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
	MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
	MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
	MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82,  6);
	MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
	MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
	MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);

	buf[0] += a;
	buf[1] += b;
	buf[2] += c;
	buf[3] += d;
}

#undef F1
#undef F2
#undef F3
#undef F4
#undef MD5STEP

#endif


#if POOLWORDS % 16
#error extract_entropy() assumes that POOLWORDS is a multiple of 16 words.
#endif
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.  This function computes how many remaining
 * bits of entropy are left in the pool, but it does not restrict the
 * number of bytes that are actually obtained.
 */
static ssize_t extract_entropy(struct random_bucket *r, char * buf,
			       size_t nbytes, int to_user)
{
	ssize_t ret, i;
	__u32 tmp[HASH_BUFFER_SIZE];
	char *cp,*dp;

	add_timer_randomness(r, &extract_timer_state, nbytes);
	
	/* Redundant, but just in case... */
	if (r->entropy_count > POOLBITS) 
		r->entropy_count = POOLBITS;

	ret = nbytes;
	if (r->entropy_count / 8 >= nbytes)
		r->entropy_count -= nbytes*8;
	else
		r->entropy_count = 0;

	if (r->entropy_count < WAIT_OUTPUT_BITS)
		wake_up_interruptible(&random_write_wait);
	
	while (nbytes) {
		/* Hash the pool to get the output */
		tmp[0] = 0x67452301;
		tmp[1] = 0xefcdab89;
		tmp[2] = 0x98badcfe;
		tmp[3] = 0x10325476;
#ifdef USE_SHA
		tmp[4] = 0xc3d2e1f0;
#endif
		for (i = 0; i < POOLWORDS; i += 16)
			HASH_TRANSFORM(tmp, r->pool+i);
		/* Modify pool so next hash will produce different results */
		add_entropy_word(r, tmp[0]);
		add_entropy_word(r, tmp[1]);
		add_entropy_word(r, tmp[2]);
		add_entropy_word(r, tmp[3]);
#ifdef USE_SHA
		add_entropy_word(r, tmp[4]);
#endif
		/*
		 * Run the hash transform one more time, since we want
		 * to add at least minimal obscuring of the inputs to
		 * add_entropy_word().
		 */
		HASH_TRANSFORM(tmp, r->pool);

		/*
		 * In case the hash function has some recognizable
		 * output pattern, we fold it in half.
		 */
		cp = (char *) tmp;
		dp = cp + (HASH_BUFFER_SIZE*sizeof(__u32)) - 1;
		for (i=0; i <  HASH_BUFFER_SIZE*sizeof(__u32)/2; i++) {
			*cp ^= *dp;
			cp++;  dp--;
		}
		
		/* Copy data to destination buffer */
		i = MIN(nbytes, HASH_BUFFER_SIZE*sizeof(__u32)/2);
		if (to_user) {
			i -= copy_to_user(buf, (__u8 const *)tmp, i);
			if (!i) {
				ret = -EFAULT;
				break;
			}
		} else
			memcpy(buf, (__u8 const *)tmp, i);
		nbytes -= i;
		buf += i;
		add_timer_randomness(r, &extract_timer_state, nbytes);
		if (to_user && need_resched)
			schedule();
	}

	/* Wipe data from memory */
	memset(tmp, 0, sizeof(tmp));
	
	return ret;
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for seeding TCP sequence
 * numbers, etc.
 */
void get_random_bytes(void *buf, int nbytes)
{
	extract_entropy(&random_state, (char *) buf, nbytes, 0);
}

static ssize_t
random_read(struct file * file, char * buf, size_t nbytes, loff_t *ppos)
{
	struct wait_queue 	wait = { current, NULL };
	ssize_t			n, retval = 0, count = 0;
	
	if (nbytes == 0)
		return 0;

	add_wait_queue(&random_read_wait, &wait);
	while (nbytes > 0) {
		current->state = TASK_INTERRUPTIBLE;
		
		n = nbytes;
		if (n > random_state.entropy_count / 8)
			n = random_state.entropy_count / 8;
		if (n == 0) {
			if (file->f_flags & O_NONBLOCK) {
				retval = -EAGAIN;
				break;
			}
			if (signal_pending(current)) {
				retval = -ERESTARTSYS;
				break;
			}
			schedule();
			continue;
		}
		n = extract_entropy(&random_state, buf, n, 1);
		if (n < 0) {
			if (count == 0)
				retval = n;
			break;
		}
		count += n;
		buf += n;
		nbytes -= n;
		break;		/* This break makes the device work */
				/* like a named pipe */
	}
	current->state = TASK_RUNNING;
	remove_wait_queue(&random_read_wait, &wait);

	/*
	 * If we gave the user some bytes, update the access time.
	 */
	if (count != 0) {
		UPDATE_ATIME(file->f_dentry->d_inode);
	}
	
	return (count ? count : retval);
}

static ssize_t
random_read_unlimited(struct file * file, char * buf,
		      size_t nbytes, loff_t *ppos)
{
	return extract_entropy(&random_state, buf, nbytes, 1);
}

static unsigned int
random_poll(struct file *file, poll_table * wait)
{
	unsigned int mask;

	poll_wait(&random_read_wait, wait);
	poll_wait(&random_write_wait, wait);
	mask = 0;
	if (random_state.entropy_count >= WAIT_INPUT_BITS)
		mask |= POLLIN | POLLRDNORM;
	if (random_state.entropy_count < WAIT_OUTPUT_BITS)
		mask |= POLLOUT | POLLWRNORM;
	return mask;
}

static ssize_t
random_write(struct file * file, const char * buffer,
	     size_t count, loff_t *ppos)
{
	ssize_t		i, bytes, ret = 0;
	__u32 		buf[16];
	const char 	*p = buffer;
	ssize_t		c = count;

	while (c > 0) {
		bytes = MIN(c, sizeof(buf));

		bytes -= copy_from_user(&buf, p, bytes);
		if (!bytes) {
			if (!ret)
				ret = -EFAULT;
			break;
		}
		c -= bytes;
		p += bytes;
		ret += bytes;
		
		i = (bytes+sizeof(__u32)-1) / sizeof(__u32);
		while (i--)
			add_entropy_word(&random_state, buf[i]);
	}
	if (ret > 0) {
		file->f_dentry->d_inode->i_mtime = CURRENT_TIME;
		mark_inode_dirty(file->f_dentry->d_inode);
	}
	return ret;
}

static int
random_ioctl(struct inode * inode, struct file * file,
	     unsigned int cmd, unsigned long arg)
{
	int *p, size, ent_count;
	int retval;
	
	switch (cmd) {
	case RNDGETENTCNT:
		retval = verify_area(VERIFY_WRITE, (void *) arg, sizeof(int));
		if (retval)
			return(retval);
		ent_count = random_state.entropy_count;
		put_user(ent_count, (int *) arg);
		return 0;
	case RNDADDTOENTCNT:
		if (!suser())
			return -EPERM;
		retval = verify_area(VERIFY_READ, (void *) arg, sizeof(int));
		if (retval)
			return(retval);
		get_user(ent_count, (int *) arg);
		/*
		 * Add i to entropy_count, limiting the result to be
		 * between 0 and POOLBITS.
		 */
		if (ent_count < -random_state.entropy_count)
			random_state.entropy_count = 0;
		else if (ent_count > POOLBITS)
			random_state.entropy_count = POOLBITS;
		else {
			random_state.entropy_count += ent_count;
			if (random_state.entropy_count > POOLBITS)
				random_state.entropy_count = POOLBITS;
			if (random_state.entropy_count < 0)
				random_state.entropy_count = 0;
		}
		/*
		 * Wake up waiting processes if we have enough
		 * entropy.
		 */
		if (random_state.entropy_count >= WAIT_INPUT_BITS)
			wake_up_interruptible(&random_read_wait);
		return 0;
	case RNDGETPOOL:
		if (!suser())
			return -EPERM;
		p = (int *) arg;
		retval = verify_area(VERIFY_WRITE, (void *) p, sizeof(int));
		if (retval)
			return(retval);
		ent_count = random_state.entropy_count;
		put_user(ent_count, p++);
		retval = verify_area(VERIFY_WRITE, (void *) p, sizeof(int));
		if (retval)
			return(retval);
		get_user(size, p);
		put_user(POOLWORDS, p++);
		if (size < 0)
			return -EINVAL;
		if (size > POOLWORDS)
			size = POOLWORDS;
		if (copy_to_user(p, random_state.pool, size*sizeof(__u32)))
			return -EFAULT;
		return 0;
	case RNDADDENTROPY:
		if (!suser())
			return -EPERM;
		p = (int *) arg;
		retval = verify_area(VERIFY_READ, (void *) p, 2*sizeof(int));
		if (retval)
			return(retval);
		get_user(ent_count, p++);
		if (ent_count < 0)
			return -EINVAL;
		get_user(size, p++);
		retval = verify_area(VERIFY_READ, (void *) p, size);
		if (retval)
			return retval;
		retval = random_write(file, (const char *) p,
				      size, &file->f_pos);
		if (retval < 0)
			return retval;
		/*
		 * Add ent_count to entropy_count, limiting the result to be
		 * between 0 and POOLBITS.
		 */
		if (ent_count > POOLBITS)
			random_state.entropy_count = POOLBITS;
		else {
			random_state.entropy_count += ent_count;
			if (random_state.entropy_count > POOLBITS)
				random_state.entropy_count = POOLBITS;
			if (random_state.entropy_count < 0)
				random_state.entropy_count = 0;
		}
		/*
		 * Wake up waiting processes if we have enough
		 * entropy.
		 */
		if (random_state.entropy_count >= WAIT_INPUT_BITS)
			wake_up_interruptible(&random_read_wait);
		return 0;
	case RNDZAPENTCNT:
		if (!suser())
			return -EPERM;
		random_state.entropy_count = 0;
		return 0;
	case RNDCLEARPOOL:
		/* Clear the entropy pool and associated counters. */
		if (!suser())
			return -EPERM;
		rand_clear_pool();
		return 0;
	default:
		return -EINVAL;
	}
}

struct file_operations random_fops = {
	NULL,		/* random_lseek */
	random_read,
	random_write,
	NULL,		/* random_readdir */
	random_poll,	/* random_poll */
	random_ioctl,
	NULL,		/* random_mmap */
	NULL,		/* no special open code */
	NULL		/* no special release code */
};

struct file_operations urandom_fops = {
	NULL,		/* unrandom_lseek */
	random_read_unlimited,
	random_write,
	NULL,		/* urandom_readdir */
	NULL,		/* urandom_poll */
	random_ioctl,
	NULL,		/* urandom_mmap */
	NULL,		/* no special open code */
	NULL		/* no special release code */
};

/*
 * TCP initial sequence number picking.  This uses the random number
 * generator to pick an initial secret value.  This value is hashed
 * along with the TCP endpoint information to provide a unique
 * starting point for each pair of TCP endpoints.  This defeats
 * attacks which rely on guessing the initial TCP sequence number.
 * This algorithm was suggested by Steve Bellovin.
 *
 * Using a very strong hash was taking an appreciable amount of the total
 * TCP connection establishment time, so this is a weaker hash,
 * compensated for by changing the secret periodically.
 */

/* F, G and H are basic MD4 functions: selection, majority, parity */
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))

#define ROTL(n,X)  ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) )

/* FF, GG and HH are MD4 transformations for rounds 1, 2 and 3 */
/* Rotation is separate from addition to prevent recomputation */
#define FF(a, b, c, d, x, s) \
  {(a) += F ((b), (c), (d)) + (x); \
   (a) = ROTL ((s), (a));}
#define GG(a, b, c, d, x, s) \
  {(a) += G ((b), (c), (d)) + (x) + 013240474631UL; \
   (a) = ROTL ((s), (a));}
#define HH(a, b, c, d, x, s) \
  {(a) += H ((b), (c), (d)) + (x) + 015666365641UL; \
   (a) = ROTL ((s), (a));}

/*
 * Basic cut-down MD4 transform.  Returns only 32 bits of result.
 */
static __u32 halfMD4Transform (__u32 const buf[4], __u32 const in[8])
{
	__u32	a = buf[0], b = buf[1], c = buf[2], d = buf[3];

	/* Round 1 */
	FF (a, b, c, d, in[ 0],  3);
	FF (d, a, b, c, in[ 1],  7);
	FF (c, d, a, b, in[ 2], 11);
	FF (b, c, d, a, in[ 3], 19);
	FF (a, b, c, d, in[ 4],  3);
	FF (d, a, b, c, in[ 5],  7);
	FF (c, d, a, b, in[ 6], 11);
	FF (b, c, d, a, in[ 7], 19);

	/* Round 2 */
	GG (a, b, c, d, in[ 0],  3);
	GG (d, a, b, c, in[ 4],  5);
	GG (c, d, a, b, in[ 1],  9);
	GG (b, c, d, a, in[ 5], 13);
	GG (a, b, c, d, in[ 2],  3);
	GG (d, a, b, c, in[ 6],  5);
	GG (c, d, a, b, in[ 3],  9);
	GG (b, c, d, a, in[ 7], 13);

	/* Round 3 */
	HH (a, b, c, d, in[ 0],  3);
	HH (d, a, b, c, in[ 4],  9);
	HH (c, d, a, b, in[ 2], 11);
	HH (b, c, d, a, in[ 6], 15);
	HH (a, b, c, d, in[ 1],  3);
	HH (d, a, b, c, in[ 5],  9);
	HH (c, d, a, b, in[ 3], 11);
	HH (b, c, d, a, in[ 7], 15);

	return buf[1] + b;	/* "most hashed" word */
	/* Alternative: return sum of all words? */
}

/* This should not be decreased so low that ISNs wrap too fast. */
#define REKEY_INTERVAL	300
#define HASH_BITS 24

__u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr,
				 __u16 sport, __u16 dport)
{
	static __u32	rekey_time = 0;
	static __u32	count = 0;
	static __u32	secret[12];
	struct timeval 	tv;
	__u32		seq;

	/*
	 * Pick a random secret every REKEY_INTERVAL seconds.
	 */
	do_gettimeofday(&tv);	/* We need the usecs below... */

	if (!rekey_time ||
	    (tv.tv_sec - rekey_time) > REKEY_INTERVAL) {
		rekey_time = tv.tv_sec;
		/* First three words are overwritten below. */
		get_random_bytes(&secret+3, sizeof(secret)-12);
		count = (tv.tv_sec/REKEY_INTERVAL) << HASH_BITS;
	}

	/*
	 *  Pick a unique starting offset for each TCP connection endpoints
	 *  (saddr, daddr, sport, dport).
	 *  Note that the words are placed into the first words to be
	 *  mixed in with the halfMD4.  This is because the starting
	 *  vector is also a random secret (at secret+8), and further
	 *  hashing fixed data into it isn't going to improve anything,
	 *  so we should get started with the variable data.
	 */
	secret[0]=saddr;
	secret[1]=daddr;
	secret[2]=(sport << 16) + dport;

	seq = (halfMD4Transform(secret+8, secret) &
	       ((1<<HASH_BITS)-1)) + (count << HASH_BITS);

	/*
	 *	As close as possible to RFC 793, which
	 *	suggests using a 250kHz clock.
	 *	Further reading shows this assumes 2Mb/s networks.
	 *	For 10Mb/s ethernet, a 1MHz clock is appropriate.
	 *	That's funny, Linux has one built in!  Use it!
	 *	(Networks are faster now - should this be increased?)
	 */
	seq += tv.tv_usec + tv.tv_sec*1000000;
#if 0
	printk("init_seq(%lx, %lx, %d, %d) = %d\n",
	       saddr, daddr, sport, dport, seq);
#endif
	return seq;
}

#ifdef CONFIG_SYN_COOKIES
/*
 * Secure SYN cookie computation. This is the algorithm worked out by
 * Dan Bernstein and Eric Schenk.
 *
 * For linux I implement the 1 minute counter by looking at the jiffies clock.
 * The count is passed in as a parameter;
 *
 */
__u32 secure_tcp_syn_cookie(__u32 saddr, __u32 daddr,
		 __u16 sport, __u16 dport, __u32 sseq, __u32 count)
{
	static int	is_init = 0;
	static __u32	secret[2][16];
	__u32 		tmp[16];
	__u32		seq;

	/*
	 * Pick two random secret the first time we open a TCP connection.
	 */
	if (is_init == 0) {
		get_random_bytes(&secret[0], sizeof(secret[0]));
		get_random_bytes(&secret[1], sizeof(secret[1]));
		is_init = 1;
	}

	/*
	 * Compute the secure sequence number.
	 * The output should be:
   	 *   MD5(sec1,saddr,sport,daddr,dport,sec1) + their sequence number
         *      + (count * 2^24)
	 *      + (MD5(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
	 * Where count increases every minute by 1.
	 */

	memcpy(tmp, secret[0], sizeof(tmp));
	tmp[8]=saddr;
	tmp[9]=daddr;
	tmp[10]=(sport << 16) + dport;
	HASH_TRANSFORM(tmp, tmp);
	seq = tmp[1];

	memcpy(tmp, secret[1], sizeof(tmp));
	tmp[8]=saddr;
	tmp[9]=daddr;
	tmp[10]=(sport << 16) + dport;
	tmp[11]=count;	/* minute counter */
	HASH_TRANSFORM(tmp, tmp);

	seq += sseq + (count << 24) + (tmp[1] & 0x00ffffff);

	/* Zap lower 3 bits to leave room for the MSS representation */
	return (seq & 0xfffff8);
}
#endif


#ifdef RANDOM_BENCHMARK
/*
 * This is so we can do some benchmarking of the random driver, to see
 * how much overhead add_timer_randomness really takes.  This only
 * works on a Pentium, since it depends on the timer clock...
 *
 * Note: the results of this benchmark as of this writing (5/27/96)
 *
 * On a Pentium, add_timer_randomness() takes between 150 and 1000
 * clock cycles, with an average of around 600 clock cycles.  On a 75
 * MHz Pentium, this translates to 2 to 13 microseconds, with an
 * average time of 8 microseconds.  This should be fast enough so we
 * can use add_timer_randomness() even with the fastest of interrupts...
 */
static inline unsigned long long get_clock_cnt(void)
{
	unsigned long low, high;
	__asm__(".byte 0x0f,0x31" :"=a" (low), "=d" (high));
	return (((unsigned long long) high << 31) | low); 
}

__initfunc(static void
initialize_benchmark(struct random_benchmark *bench,
	             const char *descr, int unit))
{
	bench->times = 0;
	bench->accum = 0;
	bench->max = 0;
	bench->min = 1 << 31;
	bench->descr = descr;
	bench->unit = unit;
}

static void begin_benchmark(struct random_benchmark *bench)
{
#ifdef BENCHMARK_NOINT
	save_flags(bench->flags); cli();
#endif
	bench->start_time = get_clock_cnt();
}

static void end_benchmark(struct random_benchmark *bench)
{
	unsigned long ticks;
	
	ticks = (unsigned long) (get_clock_cnt() - bench->start_time);
#ifdef BENCHMARK_NOINT
	restore_flags(bench->flags);
#endif
	if (ticks < bench->min)
		bench->min = ticks;
	if (ticks > bench->max)
		bench->max = ticks;
	bench->accum += ticks;
	bench->times++;
	if (bench->times == BENCHMARK_INTERVAL) {
		printk("Random benchmark: %s %d: %lu min, %lu avg, "
		       "%lu max\n", bench->descr, bench->unit, bench->min,
		       bench->accum / BENCHMARK_INTERVAL, bench->max);
		bench->times = 0;
		bench->accum = 0;
		bench->max = 0;
		bench->min = 1 << 31;
	}
}	
#endif /* RANDOM_BENCHMARK */