1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
/*
* super.c
*
* Copyright (c) 1999 Al Smith
*
* Portions derived from work (c) 1995,1996 Christian Vogelgsang.
*/
#include <linux/module.h>
#include <linux/efs.h>
void efs_read_inode(struct inode *);
void efs_put_super(struct super_block *);
int efs_statfs(struct super_block *, struct statfs *, int);
struct super_block * efs_read_super(struct super_block *, void *, int);
static struct file_system_type efs_fs_type = {
"efs", /* filesystem name */
FS_REQUIRES_DEV, /* fs_flags */
efs_read_super, /* entry function pointer */
NULL /* next */
};
static struct super_operations efs_superblock_operations = {
efs_read_inode, /* read_inode */
NULL, /* write_inode */
NULL, /* put_inode */
NULL, /* delete_inode */
NULL, /* notify_change */
efs_put_super, /* put_super */
NULL, /* write_super */
efs_statfs, /* statfs */
NULL /* remount */
};
int init_module(void) {
return register_filesystem(&efs_fs_type);
}
void cleanup_module(void) {
unregister_filesystem(&efs_fs_type);
}
static long efs_validate_vh(struct volume_header *vh, int slice) {
int i, j;
int32_t sblock = 0;
int type;
char name[VDNAMESIZE+1];
if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
printk("EFS: invalid volume descriptor\n");
return 0;
}
#ifdef DEBUG
printk("EFS: bf: %16s\n", vh->vh_bootfile);
#endif
for(i = 0; i < NVDIR; i++) {
for(j = 0; j < VDNAMESIZE; j++) {
name[j] = vh->vh_vd[i].vd_name[j];
}
name[j] = (char) 0;
#ifdef DEBUG
if (name[0]) {
printk("EFS: vh: 0x%8s block: 0x%08x size: 0x%08x\n",
name,
(int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
(int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
}
#endif
}
for(i = 0; i < NPARTAB; i++) {
type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
#ifdef DEBUG
printk("EFS: pt: start: %08d size: %08d type: %08d\n",
(int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
(int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
type);
#endif
if (slice == i && (type == 5 || type == 7)) {
sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
} else if (slice == -1 && sblock == 0) {
if (type == 5 || type == 7) {
sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
slice = i;
}
}
}
if (sblock) {
printk("EFS: using slice %d (offset 0x%x)\n", slice, sblock);
} else if (slice != -1) {
printk("EFS: no efs filesystem found on slice %d\n", slice);
}
return(sblock);
}
static int efs_validate_super(struct efs_spb *sb, struct efs *super) {
if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic))) return -1;
sb->fs_magic = be32_to_cpu(super->fs_magic);
sb->total_blocks = be32_to_cpu(super->fs_size);
sb->first_block = be32_to_cpu(super->fs_firstcg);
sb->group_size = be32_to_cpu(super->fs_cgfsize);
sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
sb->total_groups = be16_to_cpu(super->fs_ncg);
return 0;
}
struct super_block *efs_read_super(struct super_block *s, void *d, int verbose) {
int slice = -1;
kdev_t dev = s->s_dev;
struct inode *root_inode;
struct efs_spb *spb;
struct buffer_head *bh;
if (d) {
/* parse mount option */
if (!strncmp(d, "slice=", 6)) {
slice = simple_strtoul(d+6, NULL, 10);
} else if (strcmp(d, "")) {
printk("EFS: invalid mount option\n");
return(NULL);
}
}
MOD_INC_USE_COUNT;
lock_super(s);
/* approx 230 bytes available in this union */
spb = (struct efs_spb *) &(s->u.generic_sbp);
set_blocksize(dev, EFS_BLOCKSIZE);
/* read the vh (volume header) block */
bh = bread(dev, 0, EFS_BLOCKSIZE);
if (!bh) {
printk("EFS: cannot read volume header\n");
goto out_no_fs_ul;
}
spb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data, slice);
brelse(bh);
if(!spb->fs_start) {
printk("EFS: invalid volume descriptor\n");
goto out_no_fs_ul;
}
bh = bread(dev, spb->fs_start + EFS_SUPER, EFS_BLOCKSIZE);
if (!bh) {
printk("EFS: unable to read superblock\n");
goto out_no_fs_ul;
}
if (efs_validate_super(spb, (struct efs *) bh->b_data)) {
printk("EFS: invalid superblock\n");
brelse(bh);
goto out_no_fs_ul;
}
s->s_magic = EFS_SUPER_MAGIC;
s->s_blocksize = EFS_BLOCKSIZE;
s->s_blocksize_bits = EFS_BLOCKSIZE_BITS;
if (!(s->s_flags & MS_RDONLY)) {
#ifdef DEBUG
printk("EFS: forcing read-only: RW access not supported\n");
#endif
s->s_flags |= MS_RDONLY;
}
s->s_op = &efs_superblock_operations;
s->s_dev = dev;
s->s_root = NULL;
root_inode = iget(s, EFS_ROOTINODE);
if (root_inode) {
s->s_root = d_alloc_root(root_inode, NULL);
if (!(s->s_root)) {
iput(root_inode);
}
}
unlock_super(s);
if(!(s->s_root)) {
printk("EFS: not mounted\n");
goto out_no_fs;
}
if(check_disk_change(s->s_dev)) {
printk("EFS: device changed\n");
goto out_no_fs;
}
return(s);
out_no_fs_ul:
unlock_super(s);
out_no_fs:
s->s_dev = 0;
MOD_DEC_USE_COUNT;
return(NULL);
}
void efs_put_super(struct super_block *s) {
s->s_dev = 0;
MOD_DEC_USE_COUNT;
}
int efs_statfs(struct super_block *s, struct statfs *buf, int bufsiz) {
struct statfs tmp;
struct efs_spb *sbp = (struct efs_spb *)&s->u.generic_sbp;
tmp.f_type = EFS_SUPER_MAGIC;
tmp.f_bsize = EFS_BLOCKSIZE;
tmp.f_blocks = sbp->total_blocks;
tmp.f_bfree = 0;
tmp.f_bavail = 0;
tmp.f_files = 0; /* ? */
tmp.f_ffree = 0;
tmp.f_fsid.val[0] = (sbp->fs_magic >> 16) & 0xffff;
tmp.f_fsid.val[1] = sbp->fs_magic & 0xffff;
tmp.f_namelen = EFS_MAXNAMELEN;
return copy_to_user(buf, &tmp, bufsiz) ? -EFAULT : 0;
}
|