1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
/*
* linux/include/asm-arm/proc-armo/pgtable.h
*
* Copyright (C) 1995, 1996 Russell King
*/
#ifndef __ASM_PROC_PGTABLE_H
#define __ASM_PROC_PGTABLE_H
#include <asm/arch/mmu.h>
#define LIBRARY_TEXT_START 0x0c000000
/*
* Cache flushing...
*/
#define flush_cache_all() do { } while (0)
#define flush_cache_mm(mm) do { } while (0)
#define flush_cache_range(mm,start,end) do { } while (0)
#define flush_cache_page(vma,vmaddr) do { } while (0)
#define flush_page_to_ram(page) do { } while (0)
/*
* TLB flushing:
*
* - flush_tlb() flushes the current mm struct TLBs
* - flush_tlb_all() flushes all processes TLBs
* - flush_tlb_mm(mm) flushes the specified mm context TLB's
* - flush_tlb_page(vma, vmaddr) flushes one page
* - flush_tlb_range(mm, start, end) flushes a range of pages
*/
#define flush_tlb() flush_tlb_mm(current->mm)
extern __inline__ void flush_tlb_all(void)
{
struct task_struct *p;
p = &init_task;
do {
processor.u.armv2._update_map(p);
p = p->next_task;
} while (p != &init_task);
processor.u.armv2._remap_memc (current);
}
extern __inline__ void flush_tlb_mm(struct mm_struct *mm)
{
struct task_struct *p;
p = &init_task;
do {
if (p->mm == mm)
processor.u.armv2._update_map(p);
p = p->next_task;
} while (p != &init_task);
if (current->mm == mm)
processor.u.armv2._remap_memc (current);
}
#define flush_tlb_range(mm, start, end) flush_tlb_mm(mm)
#define flush_tlb_page(vma, vmaddr) flush_tlb_mm(vma->vm_mm)
#define __flush_entry_to_ram(entry)
/* Certain architectures need to do special things when pte's
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT PAGE_SHIFT
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT PAGE_SHIFT
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level: the arm3 is one-level, so
* we don't really have any PMD or PTE directory physically.
*/
#define PTRS_PER_PTE 1
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD 1024
/* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 8MB value just means that there will be a 8MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*/
#define VMALLOC_START 0x01a00000
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define _PAGE_PRESENT 0x001
#define _PAGE_RW 0x002
#define _PAGE_USER 0x004
#define _PAGE_PCD 0x010
#define _PAGE_ACCESSED 0x020
#define _PAGE_DIRTY 0x040
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
/*
* The arm can't do page protection for execute, and considers that the same are read.
* Also, write permissions imply read permissions. This is the closest we can get..
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
#undef TEST_VERIFY_AREA
/*
* BAD_PAGE is used for a bogus page.
*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern pte_t __bad_page(void);
extern unsigned long *empty_zero_page;
#define BAD_PAGE __bad_page()
#define ZERO_PAGE ((unsigned long) empty_zero_page)
/* number of bits that fit into a memory pointer */
#define BYTES_PER_PTR (sizeof(unsigned long))
#define BITS_PER_PTR (8*BYTES_PER_PTR)
/* to align the pointer to a pointer address */
#define PTR_MASK (~(sizeof(void*)-1))
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
#define SIZEOF_PTR_LOG2 2
/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
/* to set the page-dir */
#define SET_PAGE_DIR(tsk,pgdir) \
do { \
tsk->tss.memmap = (unsigned long)pgdir; \
processor.u.armv2._update_map(tsk); \
if ((tsk) == current) \
processor.u.armv2._remap_memc (current); \
} while (0)
extern unsigned long physical_start;
extern unsigned long physical_end;
extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }
extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; }
extern inline int pmd_none(pmd_t pmd) { return 0; }
extern inline int pmd_bad(pmd_t pmd) { return 0; }
extern inline int pmd_present(pmd_t pmd) { return 1; }
extern inline void pmd_clear(pmd_t * pmdp) { }
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
extern inline int pgd_none(pgd_t pgd) { return 0; }
extern inline int pgd_bad(pgd_t pgd) { return 0; }
extern inline int pgd_present(pgd_t pgd) { return 1; }
extern inline void pgd_clear(pgd_t * pgdp) { }
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
#define pte_cacheable(pte) 1
extern inline pte_t pte_nocache(pte_t pte) { return pte; }
extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_RW; return pte; }
extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
{ pte_t pte; pte_val(pte) = virt_to_phys(page) | pgprot_val(pgprot); return pte; }
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
extern inline unsigned long pte_page(pte_t pte)
{ return phys_to_virt(pte_val(pte) & PAGE_MASK); }
extern inline unsigned long pmd_page(pmd_t pmd)
{ return phys_to_virt(pmd_val(pmd) & PAGE_MASK); }
/* to find an entry in a page-table-directory */
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
return mm->pgd + (address >> PGDIR_SHIFT);
}
/* Find an entry in the second-level page table.. */
#define pmd_offset(dir, address) ((pmd_t *)(dir))
/* Find an entry in the third-level page table.. */
#define pte_offset(dir, address) ((pte_t *)(dir))
/*
* Allocate and free page tables. The xxx_kernel() versions are
* used to allocate a kernel page table - this turns on ASN bits
* if any.
*/
extern inline void pte_free_kernel(pte_t * pte)
{
pte_val(*pte) = 0;
}
extern inline pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
{
return (pte_t *) pmd;
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
#define pmd_free_kernel(pmdp)
#define pmd_alloc_kernel(pgd,address) ((pmd_t *)(pgd))
#define pte_free(ptep)
#define pte_alloc(pmd,address) ((pte_t *)(pmd))
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
#define pmd_free(pmd)
#define pmd_alloc(pgd,address) ((pmd_t *)(pgd))
extern inline void pgd_free(pgd_t * pgd)
{
extern void kfree(void *);
kfree((void *)pgd);
}
extern inline pgd_t * pgd_alloc(void)
{
pgd_t *pgd;
extern void *kmalloc(unsigned int, int);
pgd = (pgd_t *) kmalloc(PTRS_PER_PGD * BYTES_PER_PTR, GFP_KERNEL);
if (pgd)
memset(pgd, 0, PTRS_PER_PGD * BYTES_PER_PTR);
return pgd;
}
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
#define update_mmu_cache(vma,address,pte) processor.u.armv2._update_mmu_cache(vma,address,pte)
#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
#define SWP_OFFSET(entry) ((entry) >> 8)
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
#endif /* __ASM_PROC_PAGE_H */
|