1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
#ifndef _ASM_IA64_UACCESS_H
#define _ASM_IA64_UACCESS_H
/*
* This file defines various macros to transfer memory areas across
* the user/kernel boundary. This needs to be done carefully because
* this code is executed in kernel mode and uses user-specified
* addresses. Thus, we need to be careful not to let the user to
* trick us into accessing kernel memory that would normally be
* inaccessible. This code is also fairly performance sensitive,
* so we want to spend as little time doing saftey checks as
* possible.
*
* To make matters a bit more interesting, these macros sometimes also
* called from within the kernel itself, in which case the address
* validity check must be skipped. The get_fs() macro tells us what
* to do: if get_fs()==USER_DS, checking is performed, if
* get_fs()==KERNEL_DS, checking is bypassed.
*
* Note that even if the memory area specified by the user is in a
* valid address range, it is still possible that we'll get a page
* fault while accessing it. This is handled by filling out an
* exception handler fixup entry for each instruction that has the
* potential to fault. When such a fault occurs, the page fault
* handler checks to see whether the faulting instruction has a fixup
* associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and
* then resumes execution at the continuation point.
*
* Copyright (C) 1998, 1999 Hewlett-Packard Co
* Copyright (C) 1998, 1999 David Mosberger-Tang <davidm@hpl.hp.com>
*/
#include <linux/errno.h>
#include <linux/sched.h>
/*
* For historical reasons, the following macros are grossly misnamed:
*/
#define KERNEL_DS ((mm_segment_t) { ~0UL }) /* cf. access_ok() */
#define USER_DS ((mm_segment_t) { TASK_SIZE-1 }) /* cf. access_ok() */
#define VERIFY_READ 0
#define VERIFY_WRITE 1
#define get_ds() (KERNEL_DS)
#define get_fs() (current->addr_limit)
#define set_fs(x) (current->addr_limit = (x))
#define segment_eq(a,b) ((a).seg == (b).seg)
/*
* When accessing user memory, we need to make sure the entire area
* really is in user-level space. In order to do this efficiently, we
* make sure that the page at address TASK_SIZE is never valid (we do
* this by selecting VMALLOC_START as TASK_SIZE+PAGE_SIZE). This way,
* we can simply check whether the starting address is < TASK_SIZE
* and, if so, start accessing the memory. If the user specified bad
* length, we will fault on the NaT page and then return the
* appropriate error.
*/
#define __access_ok(addr,size,segment) (((unsigned long) (addr)) <= (segment).seg)
#define access_ok(type,addr,size) __access_ok((addr),(size),get_fs())
extern inline int
verify_area (int type, const void *addr, unsigned long size)
{
return access_ok(type,addr,size) ? 0 : -EFAULT;
}
/*
* These are the main single-value transfer routines. They automatically
* use the right size if we just have the right pointer type.
*
* Careful to not
* (a) re-use the arguments for side effects (sizeof/typeof is ok)
* (b) require any knowledge of processes at this stage
*/
#define put_user(x,ptr) __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)),get_fs())
#define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)),get_fs())
/*
* The "__xxx" versions do not do address space checking, useful when
* doing multiple accesses to the same area (the programmer has to do the
* checks by hand with "access_ok()")
*/
#define __put_user(x,ptr) __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))
#define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
/*
* The "xxx_ret" versions return constant specified in third argument, if
* something bad happens. These macros can be optimized for the
* case of just returning from the function xxx_ret is used.
*/
#define put_user_ret(x,ptr,ret) ({ if (put_user(x,ptr)) return ret; })
#define get_user_ret(x,ptr,ret) ({ if (get_user(x,ptr)) return ret; })
#define __put_user_ret(x,ptr,ret) ({ if (__put_user(x,ptr)) return ret; })
#define __get_user_ret(x,ptr,ret) ({ if (__get_user(x,ptr)) return ret; })
extern void __get_user_unknown (void);
#define __get_user_nocheck(x,ptr,size) \
({ \
register long __gu_err __asm__ ("r8") = 0; \
register long __gu_val __asm__ ("r9") = 0; \
switch (size) { \
case 1: __get_user_8(ptr); break; \
case 2: __get_user_16(ptr); break; \
case 4: __get_user_32(ptr); break; \
case 8: __get_user_64(ptr); break; \
default: __get_user_unknown(); break; \
} \
(x) = (__typeof__(*(ptr))) __gu_val; \
__gu_err; \
})
#define __get_user_check(x,ptr,size,segment) \
({ \
register long __gu_err __asm__ ("r8") = -EFAULT; \
register long __gu_val __asm__ ("r9") = 0; \
const __typeof__(*(ptr)) *__gu_addr = (ptr); \
if (__access_ok((long)__gu_addr,size,segment)) { \
__gu_err = 0; \
switch (size) { \
case 1: __get_user_8(__gu_addr); break; \
case 2: __get_user_16(__gu_addr); break; \
case 4: __get_user_32(__gu_addr); break; \
case 8: __get_user_64(__gu_addr); break; \
default: __get_user_unknown(); break; \
} \
} \
(x) = (__typeof__(*(ptr))) __gu_val; \
__gu_err; \
})
struct __large_struct { unsigned long buf[100]; };
#define __m(x) (*(struct __large_struct *)(x))
#define __get_user_64(addr) \
__asm__ ("\n1:\tld8 %0=%2\t// %0 and %1 get overwritten by exception handler\n" \
"2:\n" \
"\t.section __ex_table,\"a\"\n" \
"\t\tdata4 @gprel(1b)\n" \
"\t\tdata4 (2b-1b)|1\n" \
"\t.previous" \
: "=r"(__gu_val), "=r"(__gu_err) \
: "m"(__m(addr)), "1"(__gu_err));
#define __get_user_32(addr) \
__asm__ ("\n1:\tld4 %0=%2\t// %0 and %1 get overwritten by exception handler\n" \
"2:\n" \
"\t.section __ex_table,\"a\"\n" \
"\t\tdata4 @gprel(1b)\n" \
"\t\tdata4 (2b-1b)|1\n" \
"\t.previous" \
: "=r"(__gu_val), "=r"(__gu_err) \
: "m"(__m(addr)), "1"(__gu_err));
#define __get_user_16(addr) \
__asm__ ("\n1:\tld2 %0=%2\t// %0 and %1 get overwritten by exception handler\n" \
"2:\n" \
"\t.section __ex_table,\"a\"\n" \
"\t\tdata4 @gprel(1b)\n" \
"\t\tdata4 (2b-1b)|1\n" \
"\t.previous" \
: "=r"(__gu_val), "=r"(__gu_err) \
: "m"(__m(addr)), "1"(__gu_err));
#define __get_user_8(addr) \
__asm__ ("\n1:\tld1 %0=%2\t// %0 and %1 get overwritten by exception handler\n" \
"2:\n" \
"\t.section __ex_table,\"a\"\n" \
"\t\tdata4 @gprel(1b)\n" \
"\t\tdata4 (2b-1b)|1\n" \
"\t.previous" \
: "=r"(__gu_val), "=r"(__gu_err) \
: "m"(__m(addr)), "1"(__gu_err));
extern void __put_user_unknown (void);
#define __put_user_nocheck(x,ptr,size) \
({ \
register long __pu_err __asm__ ("r8") = 0; \
switch (size) { \
case 1: __put_user_8(x,ptr); break; \
case 2: __put_user_16(x,ptr); break; \
case 4: __put_user_32(x,ptr); break; \
case 8: __put_user_64(x,ptr); break; \
default: __put_user_unknown(); break; \
} \
__pu_err; \
})
#define __put_user_check(x,ptr,size,segment) \
({ \
register long __pu_err __asm__ ("r8") = -EFAULT; \
__typeof__(*(ptr)) *__pu_addr = (ptr); \
if (__access_ok((long)__pu_addr,size,segment)) { \
__pu_err = 0; \
switch (size) { \
case 1: __put_user_8(x,__pu_addr); break; \
case 2: __put_user_16(x,__pu_addr); break; \
case 4: __put_user_32(x,__pu_addr); break; \
case 8: __put_user_64(x,__pu_addr); break; \
default: __put_user_unknown(); break; \
} \
} \
__pu_err; \
})
/*
* The "__put_user_xx()" macros tell gcc they read from memory
* instead of writing: this is because they do not write to
* any memory gcc knows about, so there are no aliasing issues
*/
#define __put_user_64(x,addr) \
__asm__ __volatile__ ( \
"\n1:\tst8 %1=%r2\t// %0 gets overwritten by exception handler\n" \
"2:\n" \
"\t.section __ex_table,\"a\"\n" \
"\t\tdata4 @gprel(1b)\n" \
"\t\tdata4 2b-1b\n" \
"\t.previous" \
: "=r"(__pu_err) \
: "m"(__m(addr)), "rO"(x), "0"(__pu_err))
#define __put_user_32(x,addr) \
__asm__ __volatile__ ( \
"\n1:\tst4 %1=%r2\t// %0 gets overwritten by exception handler\n" \
"2:\n" \
"\t.section __ex_table,\"a\"\n" \
"\t\tdata4 @gprel(1b)\n" \
"\t\tdata4 2b-1b\n" \
"\t.previous" \
: "=r"(__pu_err) \
: "m"(__m(addr)), "rO"(x), "0"(__pu_err))
#define __put_user_16(x,addr) \
__asm__ __volatile__ ( \
"\n1:\tst2 %1=%r2\t// %0 gets overwritten by exception handler\n" \
"2:\n" \
"\t.section __ex_table,\"a\"\n" \
"\t\tdata4 @gprel(1b)\n" \
"\t\tdata4 2b-1b\n" \
"\t.previous" \
: "=r"(__pu_err) \
: "m"(__m(addr)), "rO"(x), "0"(__pu_err))
#define __put_user_8(x,addr) \
__asm__ __volatile__ ( \
"\n1:\tst1 %1=%r2\t// %0 gets overwritten by exception handler\n" \
"2:\n" \
"\t.section __ex_table,\"a\"\n" \
"\t\tdata4 @gprel(1b)\n" \
"\t\tdata4 2b-1b\n" \
"\t.previous" \
: "=r"(__pu_err) \
: "m"(__m(addr)), "rO"(x), "0"(__pu_err))
/*
* Complex access routines
*/
extern unsigned long __copy_user (void *to, const void *from, unsigned long count);
#define __copy_to_user(to,from,n) __copy_user((to), (from), (n))
#define __copy_from_user(to,from,n) __copy_user((to), (from), (n))
#define copy_to_user(to,from,n) __copy_tofrom_user((to), (from), (n), 1)
#define copy_from_user(to,from,n) __copy_tofrom_user((to), (from), (n), 0)
#define __copy_tofrom_user(to,from,n,check_to) \
({ \
void *__cu_to = (to); \
const void *__cu_from = (from); \
long __cu_len = (n); \
\
if (__access_ok((long) ((check_to) ? __cu_to : __cu_from), __cu_len, get_fs())) { \
__cu_len = __copy_user(__cu_to, __cu_from, __cu_len); \
} \
__cu_len; \
})
#define copy_to_user_ret(to,from,n,retval) \
({ \
if (copy_to_user(to,from,n)) \
return retval; \
})
#define copy_from_user_ret(to,from,n,retval) \
({ \
if (copy_from_user(to,from,n)) \
return retval; \
})
extern unsigned long __do_clear_user (void *, unsigned long);
#define __clear_user(to,n) \
({ \
__do_clear_user(to,n); \
})
#define clear_user(to,n) \
({ \
unsigned long __cu_len = (n); \
if (__access_ok((long) to, __cu_len, get_fs())) { \
__cu_len = __do_clear_user(to, __cu_len); \
} \
__cu_len; \
})
/* Returns: -EFAULT if exception before terminator, N if the entire
buffer filled, else strlen. */
extern long __strncpy_from_user (char *to, const char *from, long to_len);
#define strncpy_from_user(to,from,n) \
({ \
const char * __sfu_from = (from); \
long __sfu_ret = -EFAULT; \
if (__access_ok((long) __sfu_from, 0, get_fs())) \
__sfu_ret = __strncpy_from_user((to), __sfu_from, (n)); \
__sfu_ret; \
})
/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
extern unsigned long __strlen_user (const char *);
#define strlen_user(str) \
({ \
const char *__su_str = (str); \
unsigned long __su_ret = 0; \
if (__access_ok((long) __su_str, 0, get_fs())) \
__su_ret = __strlen_user(__su_str); \
__su_ret; \
})
/*
* Returns: 0 if exception before NUL or reaching the supplied limit
* (N), a value greater than N if the limit would be exceeded, else
* strlen.
*/
extern unsigned long __strnlen_user (const char *, long);
#define strnlen_user(str, len) \
({ \
const char *__su_str = (str); \
unsigned long __su_ret = 0; \
if (__access_ok((long) __su_str, 0, get_fs())) \
__su_ret = __strnlen_user(__su_str, len); \
__su_ret; \
})
struct exception_table_entry {
int addr; /* gp-relative address of insn this fixup is for */
int skip; /* number of bytes to skip to get to the continuation point.
Bit 0 tells us if r9 should be cleared to 0*/
};
extern const struct exception_table_entry *search_exception_table (unsigned long addr);
#endif /* _ASM_IA64_UACCESS_H */
|