blob: 50024e3481c1abc965d16c920cc71950ebffee62 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1994 by Waldorf Electronics
* Copyright (C) 1995 - 1998, 2001 by Ralf Baechle
*/
#ifndef _ASM_DELAY_H
#define _ASM_DELAY_H
#include <linux/config.h>
extern unsigned long loops_per_jiffy;
extern __inline__ void
__delay(unsigned long loops)
{
__asm__ __volatile__ (
".set\tnoreorder\n"
"1:\tbnez\t%0,1b\n\t"
"subu\t%0,1\n\t"
".set\treorder"
:"=r" (loops)
:"0" (loops));
}
/*
* division by multiplication: you don't have to worry about
* loss of precision.
*
* Use only for very small delays ( < 1 msec). Should probably use a
* lookup table, really, as the multiplications take much too long with
* short delays. This is a "reasonable" implementation, though (and the
* first constant multiplications gets optimized away if the delay is
* a constant)
*/
extern __inline__ void __udelay(unsigned long usecs, unsigned long lpj)
{
unsigned long lo;
usecs *= 0x00068db8; /* 2**32 / (1000000 / HZ) */
__asm__("multu\t%2,%3"
:"=h" (usecs), "=l" (lo)
:"r" (usecs),"r" (lpj));
__delay(usecs);
}
#ifdef CONFIG_SMP
#define __udelay_val cpu_data[smp_processor_id()].udelay_val
#else
#define __udelay_val loops_per_jiffy
#endif
#define udelay(usecs) __udelay((usecs),__udelay_val)
#endif /* _ASM_DELAY_H */
|