1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
#ifndef _PPC_PGTABLE_H
#define _PPC_PGTABLE_H
#include <linux/config.h>
#ifndef __ASSEMBLY__
#include <linux/threads.h>
#include <asm/processor.h> /* For TASK_SIZE */
#include <asm/mmu.h>
#include <asm/page.h>
#ifndef CONFIG_8xx
struct mm_struct;
struct vm_area_struct;
extern void local_flush_tlb_all(void);
extern void local_flush_tlb_mm(struct mm_struct *mm);
extern void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr);
extern void local_flush_tlb_range(struct mm_struct *mm, unsigned long start,
unsigned long end);
#else /* CONFIG_8xx */
#define __tlbia() asm volatile ("tlbia" : : )
extern inline void local_flush_tlb_all(void)
{ __tlbia(); }
extern inline void local_flush_tlb_mm(struct mm_struct *mm)
{ __tlbia(); }
extern inline void local_flush_tlb_page(struct vm_area_struct *vma,
unsigned long vmaddr)
{ __tlbia(); }
extern inline void local_flush_tlb_range(struct mm_struct *mm,
unsigned long start, unsigned long end)
{ __tlbia(); }
extern inline void flush_hash_page(unsigned context, unsigned long va)
{ }
#endif
#define flush_tlb_all local_flush_tlb_all
#define flush_tlb_mm local_flush_tlb_mm
#define flush_tlb_page local_flush_tlb_page
#define flush_tlb_range local_flush_tlb_range
/*
* No cache flushing is required when address mappings are
* changed, because the caches on PowerPCs are physically
* addressed.
* Also, when SMP we use the coherency (M) bit of the
* BATs and PTEs. -- Cort
*/
#define flush_cache_all() do { } while (0)
#define flush_cache_mm(mm) do { } while (0)
#define flush_cache_range(mm, a, b) do { } while (0)
#define flush_cache_page(vma, p) do { } while (0)
extern void flush_icache_range(unsigned long, unsigned long);
extern void __flush_page_to_ram(unsigned long page_va);
#define flush_page_to_ram(page) __flush_page_to_ram(page_address(page))
extern unsigned long va_to_phys(unsigned long address);
extern pte_t *va_to_pte(struct task_struct *tsk, unsigned long address);
extern unsigned long ioremap_bot, ioremap_base;
#endif /* __ASSEMBLY__ */
/*
* The PowerPC MMU uses a hash table containing PTEs, together with
* a set of 16 segment registers (on 32-bit implementations), to define
* the virtual to physical address mapping.
*
* We use the hash table as an extended TLB, i.e. a cache of currently
* active mappings. We maintain a two-level page table tree, much like
* that used by the i386, for the sake of the Linux memory management code.
* Low-level assembler code in head.S (procedure hash_page) is responsible
* for extracting ptes from the tree and putting them into the hash table
* when necessary, and updating the accessed and modified bits in the
* page table tree.
*/
/*
* The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
* We also use the two level tables, but we can put the real bits in them
* needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0,
* Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has
* additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
* based upon user/super access. The TLB does not have accessed nor write
* protect. We assume that if the TLB get loaded with an entry it is
* accessed, and overload the changed bit for write protect. We use
* two bits in the software pte that are supposed to be set to zero in
* the TLB entry (24 and 25) for these indicators. Although the level 1
* descriptor contains the guarded and writethrough/copyback bits, we can
* set these at the page level since they get copied from the Mx_TWC
* register when the TLB entry is loaded. We will use bit 27 for guard, since
* that is where it exists in the MD_TWC, and bit 26 for writethrough.
* These will get masked from the level 2 descriptor at TLB load time, and
* copied to the MD_TWC before it gets loaded.
*/
/* PMD_SHIFT determines the size of the area mapped by the second-level page tables */
#define PMD_SHIFT 22
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT 22
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level: our page-table tree is two-level, so
* we don't really have any PMD directory.
*/
#define PTRS_PER_PTE 1024
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD 1024
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
#define pte_ERROR(e) \
printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
/*
* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 64MB value just means that there will be a 64MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*
* We no longer map larger than phys RAM with the BATs so we don't have
* to worry about the VMALLOC_OFFSET causing problems. We do have to worry
* about clashes between our early calls to ioremap() that start growing down
* from ioremap_base being run into the VM area allocations (growing upwards
* from VMALLOC_START). For this reason we have ioremap_bot to check when
* we actually run into our mappings setup in the early boot with the VM
* system. This really does become a problem for machines with good amounts
* of RAM. -- Cort
*/
#define VMALLOC_OFFSET (0x1000000) /* 16M */
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END ioremap_bot
/*
* Bits in a linux-style PTE. These match the bits in the
* (hardware-defined) PowerPC PTE as closely as possible.
*/
#ifndef CONFIG_8xx
/* Definitions for 60x, 740/750, etc. */
#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
#define _PAGE_USER 0x002 /* matches one of the PP bits */
#define _PAGE_RW 0x004 /* software: user write access allowed */
#define _PAGE_GUARDED 0x008
#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
#define _PAGE_DIRTY 0x080 /* C: page changed */
#define _PAGE_ACCESSED 0x100 /* R: page referenced */
#define _PAGE_HWWRITE 0x200 /* software: _PAGE_RW & _PAGE_DIRTY */
#define _PAGE_SHARED 0
#else
/* Definitions for 8xx embedded chips. */
#define _PAGE_PRESENT 0x0001 /* Page is valid */
#define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */
#define _PAGE_SHARED 0x0004 /* No ASID (context) compare */
/* These four software bits must be masked out when the entry is loaded
* into the TLB.
*/
#define _PAGE_GUARDED 0x0010 /* software: guarded access */
#define _PAGE_WRITETHRU 0x0020 /* software: use writethrough cache */
#define _PAGE_RW 0x0040 /* software: user write access allowed */
#define _PAGE_ACCESSED 0x0080 /* software: page referenced */
#define _PAGE_DIRTY 0x0100 /* C: page changed (write protect) */
#define _PAGE_USER 0x0800 /* One of the PP bits, the other must be 0 */
/* This is used to enable or disable the actual hardware write
* protection.
*/
#define _PAGE_HWWRITE _PAGE_DIRTY
#endif /* CONFIG_8xx */
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#ifdef __SMP__
#define _PAGE_BASE _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT
#else
#define _PAGE_BASE _PAGE_PRESENT | _PAGE_ACCESSED
#endif
#define _PAGE_WRENABLE _PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | \
_PAGE_SHARED)
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED)
#define PAGE_KERNEL_CI __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | \
_PAGE_NO_CACHE )
/*
* The PowerPC can only do execute protection on a segment (256MB) basis,
* not on a page basis. So we consider execute permission the same as read.
* Also, write permissions imply read permissions.
* This is the closest we can get..
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
#ifndef __ASSEMBLY__
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[1024];
#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
/*
* BAD_PAGETABLE is used when we need a bogus page-table, while
* BAD_PAGE is used for a bogus page.
*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);
#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#endif /* __ASSEMBLY__ */
/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR (8*sizeof(unsigned long))
/* to align the pointer to a pointer address */
#define PTR_MASK (~(sizeof(void*)-1))
/* sizeof(void*) == 1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware! SRB. */
#define SIZEOF_PTR_LOG2 2
#define pte_none(pte) (!pte_val(pte))
#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
#define pte_clear(ptep) do { pte_val(*(ptep)) = 0; } while (0)
#define pte_pagenr(x) ((unsigned long)((pte_val(x) >> PAGE_SHIFT)))
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) ((pmd_val(pmd) & ~PAGE_MASK) != 0)
#define pmd_present(pmd) ((pmd_val(pmd) & PAGE_MASK) != 0)
#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
/*
* Permanent address of a page.
*/
#define page_address(page) ({ if (!(page)->virtual) BUG(); (page)->virtual; })
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
#define pte_page(x) (mem_map+pte_pagenr(x))
#ifndef __ASSEMBLY__
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
extern inline int pgd_none(pgd_t pgd) { return 0; }
extern inline int pgd_bad(pgd_t pgd) { return 0; }
extern inline int pgd_present(pgd_t pgd) { return 1; }
#define pgd_clear(xp) do { } while (0)
#define pgd_page(pgd) \
((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
extern inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
extern inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
extern inline pte_t pte_rdprotect(pte_t pte) {
pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_exprotect(pte_t pte) {
pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_wrprotect(pte_t pte) {
pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
extern inline pte_t pte_mkclean(pte_t pte) {
pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
extern inline pte_t pte_mkold(pte_t pte) {
pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mkread(pte_t pte) {
pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkexec(pte_t pte) {
pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= _PAGE_RW;
if (pte_val(pte) & _PAGE_DIRTY)
pte_val(pte) |= _PAGE_HWWRITE;
return pte;
}
extern inline pte_t pte_mkdirty(pte_t pte)
{
pte_val(pte) |= _PAGE_DIRTY;
if (pte_val(pte) & _PAGE_RW)
pte_val(pte) |= _PAGE_HWWRITE;
return pte;
}
extern inline pte_t pte_mkyoung(pte_t pte) {
pte_val(pte) |= _PAGE_ACCESSED; return pte; }
/* Certain architectures need to do special things when pte's
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
extern inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
pte_t pte;
pte_val(pte) = physpage | pgprot_val(pgprot);
return pte;
}
#define mk_pte(page,pgprot) \
({ \
pte_t pte; \
pte_val(pte) = ((page - mem_map) << PAGE_SHIFT) | pgprot_val(pgprot); \
pte; \
})
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
return pte;
}
#define pmd_page(pmd) (pmd_val(pmd))
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* to find an entry in a page-table-directory */
#define pgd_offset(mm, address) ((mm)->pgd + ((address) >> PGDIR_SHIFT))
/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) dir;
}
/* Find an entry in the third-level page table.. */
extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
{
return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
extern pgd_t swapper_pg_dir[1024];
/*
* Page tables may have changed. We don't need to do anything here
* as entries are faulted into the hash table by the low-level
* data/instruction access exception handlers.
*/
#define update_mmu_cache(vma, addr, pte) do { } while (0)
/*
* When flushing the tlb entry for a page, we also need to flush the
* hash table entry. flush_hash_page is assembler (for speed) in head.S.
*/
extern void flush_hash_segments(unsigned low_vsid, unsigned high_vsid);
extern void flush_hash_page(unsigned context, unsigned long va);
/* Encode and de-code a swap entry */
#define SWP_TYPE(entry) (((entry).val >> 1) & 0x3f)
#define SWP_OFFSET(entry) ((entry).val >> 8)
#define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
#define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define swp_entry_to_pte(x) ((pte_t) { (x).val })
#define module_map vmalloc
#define module_unmap vfree
/* CONFIG_APUS */
/* For virtual address to physical address conversion */
extern void cache_clear(__u32 addr, int length);
extern void cache_push(__u32 addr, int length);
extern int mm_end_of_chunk (unsigned long addr, int len);
extern unsigned long iopa(unsigned long addr);
extern unsigned long mm_ptov(unsigned long addr) __attribute__ ((const));
/* Values for nocacheflag and cmode */
/* These are not used by the APUS kernel_map, but prevents
compilation errors. */
#define KERNELMAP_FULL_CACHING 0
#define KERNELMAP_NOCACHE_SER 1
#define KERNELMAP_NOCACHE_NONSER 2
#define KERNELMAP_NO_COPYBACK 3
/*
* Map some physical address range into the kernel address space.
*/
extern unsigned long kernel_map(unsigned long paddr, unsigned long size,
int nocacheflag, unsigned long *memavailp );
/*
* Set cache mode of (kernel space) address range.
*/
extern void kernel_set_cachemode (unsigned long address, unsigned long size,
unsigned int cmode);
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page) (0)
#define kern_addr_valid(addr) (1)
#define io_remap_page_range remap_page_range
#endif __ASSEMBLY__
#endif /* _PPC_PGTABLE_H */
|