summaryrefslogtreecommitdiffstats
path: root/include/asm-sh/io.h
blob: 0d516620c71202e8f87b4b01549421131f17eb77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#ifndef __ASM_SH_IO_H
#define __ASM_SH_IO_H

/*
 * Convention:
 *    read{b,w,l}/write{b,w,l} are for PCI,
 *    while in{b,w,l}/out{b,w,l} are for ISA
 * These may (will) be platform specific function.
 *
 * In addition, we have 
 *   ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
 *   which are processor specific.
 */

#include <asm/cache.h>

#define inw_p	inw
#define outw_p	outw

#define virt_to_bus virt_to_phys
#define bus_to_virt phys_to_virt

extern __inline__ unsigned long readb(unsigned long addr)
{
	return *(volatile unsigned char*)addr;
}

extern __inline__ unsigned long readw(unsigned long addr)
{
	return *(volatile unsigned short*)addr;
}

extern __inline__ unsigned long readl(unsigned long addr)
{
	return *(volatile unsigned long*)addr;
}

extern __inline__ void writeb(unsigned char b, unsigned long addr)
{
	*(volatile unsigned char*)addr = b;
}

extern __inline__ void writew(unsigned short b, unsigned long addr)
{
	*(volatile unsigned short*)addr = b;
}

extern __inline__ void writel(unsigned int b, unsigned long addr)
{
        *(volatile unsigned long*)addr = b;
}

extern unsigned long inb(unsigned int port);
extern unsigned long inb_p(unsigned int port);
extern unsigned long inw(unsigned int port);
extern unsigned long inl(unsigned int port);
extern void insb(unsigned int port, void *addr, unsigned long count);
extern void insw(unsigned int port, void *addr, unsigned long count);
extern void insl(unsigned int port, void *addr, unsigned long count);

extern void outb(unsigned long value, unsigned int port);
extern void outb_p(unsigned long value, unsigned int port);
extern void outw(unsigned long value, unsigned int port);
extern void outl(unsigned long value, unsigned int port);
extern void outsb(unsigned int port, const void *addr, unsigned long count);
extern void outsw(unsigned int port, const void *addr, unsigned long count);
extern void outsl(unsigned int port, const void *addr, unsigned long count);

/*
 * If the platform has PC-like I/O, this function gives us the address
 * from the offset.
 */
extern unsigned long sh_isa_slot(unsigned long offset);

#define isa_readb(a) readb(sh_isa_slot(a))
#define isa_readw(a) readw(sh_isa_slot(a))
#define isa_readl(a) readl(sh_isa_slot(a))
#define isa_writeb(b,a) writeb(b,sh_isa_slot(a))
#define isa_writew(w,a) writew(w,sh_isa_slot(a))
#define isa_writel(l,a) writel(l,sh_isa_slot(a))
#define isa_memset_io(a,b,c) \
  memset((void *)(sh_isa_slot((unsigned long)a)),(b),(c))
#define isa_memcpy_fromio(a,b,c) \
  memcpy((a),(void *)(sh_isa_slot((unsigned long)(b))),(c))
#define isa_memcpy_toio(a,b,c) \
  memcpy((void *)(sh_isa_slot((unsigned long)(a))),(b),(c))

extern __inline__ unsigned long ctrl_inb(unsigned long addr)
{
	return *(volatile unsigned char*)addr;
}

extern __inline__ unsigned long ctrl_inw(unsigned long addr)
{
	return *(volatile unsigned short*)addr;
}

extern __inline__ unsigned long ctrl_inl(unsigned long addr)
{
	return *(volatile unsigned long*)addr;
}

extern __inline__ void ctrl_outb(unsigned char b, unsigned long addr)
{
	*(volatile unsigned char*)addr = b;
}

extern __inline__ void ctrl_outw(unsigned short b, unsigned long addr)
{
	*(volatile unsigned short*)addr = b;
}

extern __inline__ void ctrl_outl(unsigned int b, unsigned long addr)
{
        *(volatile unsigned long*)addr = b;
}

#ifdef __KERNEL__

#define IO_SPACE_LIMIT 0xffffffff

#include <asm/addrspace.h>

/*
 * Change virtual addresses to physical addresses and vv.
 * These are trivial on the 1:1 Linux/SuperH mapping
 */
extern __inline__ unsigned long virt_to_phys(volatile void * address)
{
	return PHYSADDR(address);
}

extern __inline__ void * phys_to_virt(unsigned long address)
{
	return (void *)P1SEGADDR(address);
}

extern void * ioremap(unsigned long phys_addr, unsigned long size);
extern void iounmap(void *addr);

/*
 * readX/writeX() are used to access memory mapped devices. On some
 * architectures the memory mapped IO stuff needs to be accessed
 * differently. On the x86 architecture, we just read/write the
 * memory location directly.
 *
 * On SH, we have the whole physical address space mapped at all times
 * (as MIPS does), so "ioremap()" and "iounmap()" do not need to do
 * anything.  (This isn't true for all machines but we still handle
 * these cases with wired TLB entries anyway ...)
 *
 * We cheat a bit and always return uncachable areas until we've fixed
 * the drivers to handle caching properly.  
 */
extern __inline__ void * ioremap(unsigned long offset, unsigned long size)
{
	return (void *) P2SEGADDR(offset);
}

/*
 * This one maps high address device memory and turns off caching for that area.
 * it's useful if some control registers are in such an area and write combining
 * or read caching is not desirable:
 */
extern __inline__ void * ioremap_nocache (unsigned long offset, unsigned long size)
{
	return (void *) P2SEGADDR(offset);
}

extern __inline__ void iounmap(void *addr)
{
}

static __inline__ int check_signature(unsigned long io_addr,
			const unsigned char *signature, int length)
{
	int retval = 0;
	do {
		if (readb(io_addr) != *signature)
			goto out;
		io_addr++;
		signature++;
		length--;
	} while (length);
	retval = 1;
out:
	return retval;
}

/*
 * The caches on some architectures aren't dma-coherent and have need to
 * handle this in software.  There are three types of operations that
 * can be applied to dma buffers.
 *
 *  - dma_cache_wback_inv(start, size) makes caches and RAM coherent by
 *    writing the content of the caches back to memory, if necessary.
 *    The function also invalidates the affected part of the caches as
 *    necessary before DMA transfers from outside to memory.
 *  - dma_cache_inv(start, size) invalidates the affected parts of the
 *    caches.  Dirty lines of the caches may be written back or simply
 *    be discarded.  This operation is necessary before dma operations
 *    to the memory.
 *  - dma_cache_wback(start, size) writes back any dirty lines but does
 *    not invalidate the cache.  This can be used before DMA reads from
 *    memory,
 */

#define dma_cache_wback_inv(_start,_size) \
    cache_flush_area((unsigned long)(_start),((unsigned long)(_start)+(_size)))
#define dma_cache_inv(_start,_size) \
    cache_purge_area((unsigned long)(_start),((unsigned long)(_start)+(_size)))
#define dma_cache_wback(_start,_size) \
    cache_wback_area((unsigned long)(_start),((unsigned long)(_start)+(_size)))

#endif /* __KERNEL__ */
#endif /* __ASM_SH_IO_H */