1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
|
#ifndef __ASM_SH_PGTABLE_H
#define __ASM_SH_PGTABLE_H
/* Copyright (C) 1999 Niibe Yutaka */
#include <linux/config.h>
/*
* This file contains the functions and defines necessary to modify and use
* the SuperH page table tree.
*/
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <linux/threads.h>
extern pgd_t swapper_pg_dir[1024];
#ifdef CONFIG_CPU_SH3
/* Cache flushing:
*
* - flush_cache_all() flushes entire cache
* - flush_cache_mm(mm) flushes the specified mm context's cache lines
* - flush_cache_page(mm, vmaddr) flushes a single page
* - flush_cache_range(mm, start, end) flushes a range of pages
* - flush_page_to_ram(page) write back kernel page to ram
*
* Caches are indexed (effectively) by physical address on SH-3, so
* we don't need them.
*/
#define flush_cache_all() do { } while (0)
#define flush_cache_mm(mm) do { } while (0)
#define flush_cache_range(mm, start, end) do { } while (0)
#define flush_cache_page(vma, vmaddr) do { } while (0)
#define flush_page_to_ram(page) do { } while (0)
#define flush_icache_range(start, end) do { } while (0)
#elif CONFIG_CPU_SH4
/*
* Caches are broken on SH-4, so we need them.
* You do bad job!
*/
flush_cache_all()
flush_cache_mm(mm)
flush_cache_range(mm, start, end)
flush_cache_page(vma, vmaddr)
flush_page_to_ram(page)
flush_icache_range(start, end)
#endif
/* TLB flushing:
*
* - flush_tlb_all() flushes all processes TLB entries
* - flush_tlb_mm(mm) flushes the specified mm context TLB entries
* - flush_tlb_page(mm, vmaddr) flushes a single page
* - flush_tlb_range(mm, start, end) flushes a range of pages
*/
extern void flush_tlb_all(void);
extern void flush_tlb_mm(struct mm_struct *mm);
extern void flush_tlb_range(struct mm_struct *mm, unsigned long start,
unsigned long end);
extern void flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
/*
* Basically we have the same two-level (which is the logical three level
* Linux page table layout folded) page tables as the i386.
*/
#endif /* !__ASSEMBLY__ */
/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT 22
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT 22
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* Entries per page directory level: we use two-level, so
* we don't really have any PMD directory physically.
*/
#define PTRS_PER_PTE 1024
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD 1024
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
#ifndef __ASSEMBLY__
#define VMALLOC_START 0xc0000000
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END 0xe0000000
#define _PAGE_READ 0x001 /* software: read access alowed */
#define _PAGE_ACCESSED 0x002 /* software: page referenced */
#define _PAGE_DIRTY 0x004 /* D-bit : page changed */
/* 0x008 */
/* 0x010 */
#define _PAGE_RW 0x020 /* PR0-bit : write access allowed */
#define _PAGE_USER 0x040 /* PR1-bit : user space access allowed */
/* 0x080 */
#define _PAGE_PRESENT 0x100 /* V-bit : page is valid */
/* Mask which drop software flags */
#define _PAGE_FLAGS_HARDWARE_MASK 0xfffff164
/* Flags defalult: SZ=1 (4k-byte), C=1 (cachable), SH=0 (not shared) */
#define _PAGE_FLAGS_HARDWARE_DEFAULT 0x00000018
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)
/*
* As i386 and MIPS, SuperH can't do page protection for execute, and
* considers that the same are read. Also, write permissions imply
* read permissions. This is the closest we can get..
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
/*
* BAD_PAGETABLE is used when we need a bogus page-table, while
* BAD_PAGE is used for a bogus page.
*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);
extern unsigned long empty_zero_page[1024];
#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#define ZERO_PAGE(vaddr) ((unsigned long) empty_zero_page)
/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR (8*sizeof(unsigned long))
/* to align the pointer to a pointer address */
#define PTR_MASK (~(sizeof(void*)-1))
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware! SRB. */
#define SIZEOF_PTR_LOG2 2
/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
/* Certain architectures need to do special things when pte's
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
extern __inline__ void set_pte(pte_t *ptep, pte_t pteval)
{
*ptep = pteval;
}
extern __inline__ int pte_none(pte_t pte)
{
return !pte_val(pte);
}
extern __inline__ int pte_present(pte_t pte)
{
return pte_val(pte) & _PAGE_PRESENT;
}
extern __inline__ void pte_clear(pte_t *ptep)
{
pte_val(*ptep) = 0;
}
extern __inline__ int pmd_none(pmd_t pmd)
{
return !pmd_val(pmd);
}
#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
extern __inline__ int pmd_present(pmd_t pmd)
{
return pmd_val(pmd) & _PAGE_PRESENT;
}
extern __inline__ void pmd_clear(pmd_t *pmdp)
{
pmd_val(*pmdp) = 0;
}
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
extern __inline__ int pgd_none(pgd_t pgd) { return 0; }
extern __inline__ int pgd_bad(pgd_t pgd) { return 0; }
extern __inline__ int pgd_present(pgd_t pgd) { return 1; }
extern __inline__ void pgd_clear(pgd_t * pgdp) { }
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
extern __inline__ int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
extern __inline__ int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
extern __inline__ int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
extern __inline__ int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
extern __inline__ int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_RW; }
extern __inline__ pte_t pte_rdprotect(pte_t pte){ pte_val(pte) &= ~_PAGE_USER; return pte; }
extern __inline__ pte_t pte_exprotect(pte_t pte){ pte_val(pte) &= ~_PAGE_USER; return pte; }
extern __inline__ pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
extern __inline__ pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
extern __inline__ pte_t pte_wrprotect(pte_t pte){ pte_val(pte) &= ~_PAGE_RW; return pte; }
extern __inline__ pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
extern __inline__ pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
extern __inline__ pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
extern __inline__ pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
extern __inline__ pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
extern __inline__ pte_t mk_pte(unsigned long page, pgprot_t pgprot)
{
return __pte(__pa(page) | pgprot_val(pgprot));
}
/* This takes a physical page address that is used by the remapping functions */
extern __inline__ pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
return __pte(physpage | pgprot_val(pgprot));
}
extern __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}
extern __inline__ unsigned long pte_page(pte_t pte)
{
return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
}
extern __inline__ unsigned long pmd_page(pmd_t pmd)
{
return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK);
}
extern __inline__ void pmd_set(pmd_t * pmdp, pte_t * ptep)
{
pmd_val(*pmdp) = __pa(((unsigned long) ptep) & PAGE_MASK) | _PAGE_TABLE;
}
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* to find an entry in a page-table-directory */
extern __inline__ pgd_t *pgd_offset(struct mm_struct *mm, unsigned long addr)
{
return mm->pgd + (addr >> PGDIR_SHIFT);
}
/* Find an entry in the second-level page table.. */
extern __inline__ pmd_t * pmd_offset(pgd_t * dir, unsigned long addr)
{
return (pmd_t *) dir;
}
/* Find an entry in the third-level page table.. */
extern __inline__ pte_t *pte_offset(pmd_t * dir, unsigned long addr)
{
return (pte_t *) (pmd_page(*dir)) +
((addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
/*
* Allocate and free page tables. The xxx_kernel() versions are
* used to allocate a kernel page table - this turns on ASN bits
* if any.
*/
#define pgd_quicklist (current_cpu_data.pgd_quick)
#define pmd_quicklist ((unsigned long *)0)
#define pte_quicklist (current_cpu_data.pte_quick)
#define pgtable_cache_size (current_cpu_data.pgtable_cache_sz)
extern __inline__ pgd_t *get_pgd_slow(void)
{
pgd_t *ret = (pgd_t *)__get_free_page(GFP_KERNEL);
if (ret) {
memset(ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
memcpy(ret + USER_PTRS_PER_PGD, swapper_pg_dir + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
}
return ret;
}
extern __inline__ pgd_t *get_pgd_fast(void)
{
unsigned long *ret;
if ((ret = pgd_quicklist) != NULL) {
pgd_quicklist = (unsigned long *)(*ret);
ret[0] = 0;
pgtable_cache_size--;
} else
ret = (unsigned long *)get_pgd_slow();
return (pgd_t *)ret;
}
extern __inline__ void free_pgd_fast(pgd_t *pgd)
{
*(unsigned long *)pgd = (unsigned long) pgd_quicklist;
pgd_quicklist = (unsigned long *) pgd;
pgtable_cache_size++;
}
extern __inline__ void free_pgd_slow(pgd_t *pgd)
{
free_page((unsigned long)pgd);
}
extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted);
extern __inline__ pte_t *get_pte_fast(void)
{
unsigned long *ret;
if((ret = (unsigned long *)pte_quicklist) != NULL) {
pte_quicklist = (unsigned long *)(*ret);
ret[0] = ret[1];
pgtable_cache_size--;
}
return (pte_t *)ret;
}
extern __inline__ void free_pte_fast(pte_t *pte)
{
*(unsigned long *)pte = (unsigned long) pte_quicklist;
pte_quicklist = (unsigned long *) pte;
pgtable_cache_size++;
}
extern __inline__ void free_pte_slow(pte_t *pte)
{
free_page((unsigned long)pte);
}
/* We don't use pmd cache, so these are dummy routines */
extern __inline__ pmd_t *get_pmd_fast(void)
{
return (pmd_t *)0;
}
extern __inline__ void free_pmd_fast(pmd_t *pmd)
{
}
extern __inline__ void free_pmd_slow(pmd_t *pmd)
{
}
extern void __bad_pte(pmd_t *pmd);
extern void __bad_pte_kernel(pmd_t *pmd);
#define pte_free_kernel(pte) free_pte_slow(pte)
#define pte_free(pte) free_pte_slow(pte)
#define pgd_free(pgd) free_pgd_slow(pgd)
#define pgd_alloc() get_pgd_fast()
extern __inline__ pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t *page = get_pte_fast();
if (!page)
return get_pte_kernel_slow(pmd, address);
pmd_set(pmd, page);
return page + address;
}
if (pmd_bad(*pmd)) {
__bad_pte_kernel(pmd);
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
extern __inline__ pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
address = (address >> (PAGE_SHIFT-2)) & 4*(PTRS_PER_PTE - 1);
if (pmd_none(*pmd))
goto getnew;
if (pmd_bad(*pmd))
goto fix;
return (pte_t *) (pmd_page(*pmd) + address);
getnew:
{
unsigned long page = (unsigned long) get_pte_fast();
if (!page)
return get_pte_slow(pmd, address);
pmd_val(*pmd) = _PAGE_TABLE + __pa(page);
return (pte_t *) (page + address);
}
fix:
__bad_pte(pmd);
return NULL;
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
extern inline void pmd_free(pmd_t * pmd)
{
}
extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
{
return (pmd_t *) pgd;
}
#define pmd_free_kernel pmd_free
#define pmd_alloc_kernel pmd_alloc
extern int do_check_pgt_cache(int, int);
extern inline void set_pgdir(unsigned long address, pgd_t entry)
{
struct task_struct * p;
pgd_t *pgd;
read_lock(&tasklist_lock);
for_each_task(p) {
if (!p->mm)
continue;
*pgd_offset(p->mm,address) = entry;
}
read_unlock(&tasklist_lock);
for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
pgd[address >> PGDIR_SHIFT] = entry;
}
extern pgd_t swapper_pg_dir[1024];
extern void update_mmu_cache(struct vm_area_struct * vma,
unsigned long address, pte_t pte);
#define SWP_TYPE(entry) (((entry) >> 1) & 0x3f)
#define SWP_OFFSET(entry) ((entry) >> 8)
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
#define module_map vmalloc
#define module_unmap vfree
#endif /* !__ASSEMBLY__ */
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page) (0)
#define kern_addr_valid(addr) (1)
#define io_remap_page_range remap_page_range
#endif /* __ASM_SH_PAGE_H */
|