1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
/* $Id: cache.h,v 1.7 1997/05/06 09:31:46 davem Exp $
* cache.h: Cache specific code for the Sparc. These include flushing
* and direct tag/data line access.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
*/
#ifndef _SPARC_CACHE_H
#define _SPARC_CACHE_H
#include <asm/asi.h>
#define L1_CACHE_BYTES 32
#define L1_CACHE_ALIGN(x) ((((x)+(L1_CACHE_BYTES-1))&~(L1_CACHE_BYTES-1)))
/* Direct access to the instruction cache is provided through and
* alternate address space. The IDC bit must be off in the ICCR on
* HyperSparcs for these accesses to work. The code below does not do
* any checking, the caller must do so. These routines are for
* diagnostics only, but could end up being useful. Use with care.
* Also, you are asking for trouble if you execute these in one of the
* three instructions following a %asr/%psr access or modification.
*/
/* First, cache-tag access. */
extern __inline__ unsigned int get_icache_tag(int setnum, int tagnum)
{
unsigned int vaddr, retval;
vaddr = ((setnum&1) << 12) | ((tagnum&0x7f) << 5);
__asm__ __volatile__("lda [%1] %2, %0\n\t" :
"=r" (retval) :
"r" (vaddr), "i" (ASI_M_TXTC_TAG));
return retval;
}
extern __inline__ void put_icache_tag(int setnum, int tagnum, unsigned int entry)
{
unsigned int vaddr;
vaddr = ((setnum&1) << 12) | ((tagnum&0x7f) << 5);
__asm__ __volatile__("sta %0, [%1] %2\n\t" : :
"r" (entry), "r" (vaddr), "i" (ASI_M_TXTC_TAG) :
"memory");
}
/* Second cache-data access. The data is returned two-32bit quantities
* at a time.
*/
extern __inline__ void get_icache_data(int setnum, int tagnum, int subblock,
unsigned int *data)
{
unsigned int value1, value2, vaddr;
vaddr = ((setnum&0x1) << 12) | ((tagnum&0x7f) << 5) |
((subblock&0x3) << 3);
__asm__ __volatile__("ldda [%2] %3, %%g2\n\t"
"or %%g0, %%g2, %0\n\t"
"or %%g0, %%g3, %1\n\t" :
"=r" (value1), "=r" (value2) :
"r" (vaddr), "i" (ASI_M_TXTC_DATA) :
"g2", "g3");
data[0] = value1; data[1] = value2;
}
extern __inline__ void put_icache_data(int setnum, int tagnum, int subblock,
unsigned int *data)
{
unsigned int value1, value2, vaddr;
vaddr = ((setnum&0x1) << 12) | ((tagnum&0x7f) << 5) |
((subblock&0x3) << 3);
value1 = data[0]; value2 = data[1];
__asm__ __volatile__("or %%g0, %0, %%g2\n\t"
"or %%g0, %1, %%g3\n\t"
"stda %%g2, [%2] %3\n\t" : :
"r" (value1), "r" (value2),
"r" (vaddr), "i" (ASI_M_TXTC_DATA) :
"g2", "g3", "memory" /* no joke */);
}
/* Different types of flushes with the ICACHE. Some of the flushes
* affect both the ICACHE and the external cache. Others only clear
* the ICACHE entries on the cpu itself. V8's (most) allow
* granularity of flushes on the packet (element in line), whole line,
* and entire cache (ie. all lines) level. The ICACHE only flushes are
* ROSS HyperSparc specific and are in ross.h
*/
/* Flushes which clear out both the on-chip and external caches */
extern __inline__ void flush_ei_page(unsigned int addr)
{
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (addr), "i" (ASI_M_FLUSH_PAGE) :
"memory");
}
extern __inline__ void flush_ei_seg(unsigned int addr)
{
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (addr), "i" (ASI_M_FLUSH_SEG) :
"memory");
}
extern __inline__ void flush_ei_region(unsigned int addr)
{
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (addr), "i" (ASI_M_FLUSH_REGION) :
"memory");
}
extern __inline__ void flush_ei_ctx(unsigned int addr)
{
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (addr), "i" (ASI_M_FLUSH_CTX) :
"memory");
}
extern __inline__ void flush_ei_user(unsigned int addr)
{
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (addr), "i" (ASI_M_FLUSH_USER) :
"memory");
}
#endif /* !(_SPARC_CACHE_H) */
|