1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
/* $Id: dma.h,v 1.31 1999/09/10 10:44:15 davem Exp $
* include/asm-sparc/dma.h
*
* Copyright 1995 (C) David S. Miller (davem@caip.rutgers.edu)
*/
#ifndef _ASM_SPARC_DMA_H
#define _ASM_SPARC_DMA_H
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <asm/vac-ops.h> /* for invalidate's, etc. */
#include <asm/sbus.h>
#include <asm/delay.h>
#include <asm/oplib.h>
#include <asm/system.h>
#include <linux/spinlock.h>
extern spinlock_t dma_spin_lock;
static __inline__ unsigned long claim_dma_lock(void)
{
unsigned long flags;
spin_lock_irqsave(&dma_spin_lock, flags);
return flags;
}
static __inline__ void release_dma_lock(unsigned long flags)
{
spin_unlock_irqrestore(&dma_spin_lock, flags);
}
/* These are irrelevant for Sparc DMA, but we leave it in so that
* things can compile.
*/
#define MAX_DMA_CHANNELS 8
#define MAX_DMA_ADDRESS (~0UL)
#define DMA_MODE_READ 1
#define DMA_MODE_WRITE 2
/* Useful constants */
#define SIZE_16MB (16*1024*1024)
#define SIZE_64K (64*1024)
/* Structure to describe the current status of DMA registers on the Sparc */
struct sparc_dma_registers {
__volatile__ __u32 cond_reg; /* DMA condition register */
__volatile__ __u32 st_addr; /* Start address of this transfer */
__volatile__ __u32 cnt; /* How many bytes to transfer */
__volatile__ __u32 dma_test; /* DMA test register */
};
/* DVMA chip revisions */
enum dvma_rev {
dvmarev0,
dvmaesc1,
dvmarev1,
dvmarev2,
dvmarev3,
dvmarevplus,
dvmahme
};
#define DMA_HASCOUNT(rev) ((rev)==dvmaesc1)
/* Linux DMA information structure, filled during probe. */
struct Linux_SBus_DMA {
struct Linux_SBus_DMA *next;
struct linux_sbus_device *SBus_dev;
struct sparc_dma_registers *regs;
/* Status, misc info */
int node; /* Prom node for this DMA device */
int running; /* Are we doing DMA now? */
int allocated; /* Are we "owned" by anyone yet? */
/* Transfer information. */
unsigned long addr; /* Start address of current transfer */
int nbytes; /* Size of current transfer */
int realbytes; /* For splitting up large transfers, etc. */
/* DMA revision */
enum dvma_rev revision;
};
extern struct Linux_SBus_DMA *dma_chain;
/* Broken hardware... */
#ifdef CONFIG_SUN4
/* Have to sort this out. Does rev0 work fine on sun4[cmd] without isbroken?
* Or is rev0 present only on sun4 boxes? -jj */
#define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev0 || (dma)->revision == dvmarev1)
#else
#define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev1)
#endif
#define DMA_ISESC1(dma) ((dma)->revision == dvmaesc1)
/* Main routines in dma.c */
extern void dvma_init(struct linux_sbus *);
/* Fields in the cond_reg register */
/* First, the version identification bits */
#define DMA_DEVICE_ID 0xf0000000 /* Device identification bits */
#define DMA_VERS0 0x00000000 /* Sunray DMA version */
#define DMA_ESCV1 0x40000000 /* DMA ESC Version 1 */
#define DMA_VERS1 0x80000000 /* DMA rev 1 */
#define DMA_VERS2 0xa0000000 /* DMA rev 2 */
#define DMA_VERHME 0xb0000000 /* DMA hme gate array */
#define DMA_VERSPLUS 0x90000000 /* DMA rev 1 PLUS */
#define DMA_HNDL_INTR 0x00000001 /* An IRQ needs to be handled */
#define DMA_HNDL_ERROR 0x00000002 /* We need to take an error */
#define DMA_FIFO_ISDRAIN 0x0000000c /* The DMA FIFO is draining */
#define DMA_INT_ENAB 0x00000010 /* Turn on interrupts */
#define DMA_FIFO_INV 0x00000020 /* Invalidate the FIFO */
#define DMA_ACC_SZ_ERR 0x00000040 /* The access size was bad */
#define DMA_FIFO_STDRAIN 0x00000040 /* DMA_VERS1 Drain the FIFO */
#define DMA_RST_SCSI 0x00000080 /* Reset the SCSI controller */
#define DMA_RST_ENET DMA_RST_SCSI /* Reset the ENET controller */
#define DMA_RST_BPP DMA_RST_SCSI /* Reset the BPP controller */
#define DMA_ST_WRITE 0x00000100 /* write from device to memory */
#define DMA_ENABLE 0x00000200 /* Fire up DMA, handle requests */
#define DMA_PEND_READ 0x00000400 /* DMA_VERS1/0/PLUS Pending Read */
#define DMA_ESC_BURST 0x00000800 /* 1=16byte 0=32byte */
#define DMA_READ_AHEAD 0x00001800 /* DMA read ahead partial longword */
#define DMA_DSBL_RD_DRN 0x00001000 /* No EC drain on slave reads */
#define DMA_BCNT_ENAB 0x00002000 /* If on, use the byte counter */
#define DMA_TERM_CNTR 0x00004000 /* Terminal counter */
#define DMA_SCSI_SBUS64 0x00008000 /* HME: Enable 64-bit SBUS mode. */
#define DMA_CSR_DISAB 0x00010000 /* No FIFO drains during csr */
#define DMA_SCSI_DISAB 0x00020000 /* No FIFO drains during reg */
#define DMA_DSBL_WR_INV 0x00020000 /* No EC inval. on slave writes */
#define DMA_ADD_ENABLE 0x00040000 /* Special ESC DVMA optimization */
#define DMA_E_BURST8 0x00040000 /* ENET: SBUS r/w burst size */
#define DMA_BRST_SZ 0x000c0000 /* SCSI: SBUS r/w burst size */
#define DMA_BRST64 0x00080000 /* SCSI: 64byte bursts (HME on UltraSparc only) */
#define DMA_BRST32 0x00040000 /* SCSI/BPP: 32byte bursts */
#define DMA_BRST16 0x00000000 /* SCSI/BPP: 16byte bursts */
#define DMA_BRST0 0x00080000 /* SCSI: no bursts (non-HME gate arrays) */
#define DMA_ADDR_DISAB 0x00100000 /* No FIFO drains during addr */
#define DMA_2CLKS 0x00200000 /* Each transfer = 2 clock ticks */
#define DMA_3CLKS 0x00400000 /* Each transfer = 3 clock ticks */
#define DMA_EN_ENETAUI DMA_3CLKS /* Put lance into AUI-cable mode */
#define DMA_CNTR_DISAB 0x00800000 /* No IRQ when DMA_TERM_CNTR set */
#define DMA_AUTO_NADDR 0x01000000 /* Use "auto nxt addr" feature */
#define DMA_SCSI_ON 0x02000000 /* Enable SCSI dma */
#define DMA_BPP_ON DMA_SCSI_ON /* Enable BPP dma */
#define DMA_PARITY_OFF 0x02000000 /* HME: disable parity checking */
#define DMA_LOADED_ADDR 0x04000000 /* Address has been loaded */
#define DMA_LOADED_NADDR 0x08000000 /* Next address has been loaded */
#define DMA_RESET_FAS366 0x08000000 /* HME: Assert RESET to FAS366 */
/* Values describing the burst-size property from the PROM */
#define DMA_BURST1 0x01
#define DMA_BURST2 0x02
#define DMA_BURST4 0x04
#define DMA_BURST8 0x08
#define DMA_BURST16 0x10
#define DMA_BURST32 0x20
#define DMA_BURST64 0x40
#define DMA_BURSTBITS 0x7f
/* Determine highest possible final transfer address given a base */
#define DMA_MAXEND(addr) (0x01000000UL-(((unsigned long)(addr))&0x00ffffffUL))
/* Yes, I hack a lot of elisp in my spare time... */
#define DMA_ERROR_P(regs) ((((regs)->cond_reg) & DMA_HNDL_ERROR))
#define DMA_IRQ_P(regs) ((((regs)->cond_reg) & (DMA_HNDL_INTR | DMA_HNDL_ERROR)))
#define DMA_WRITE_P(regs) ((((regs)->cond_reg) & DMA_ST_WRITE))
#define DMA_OFF(regs) ((((regs)->cond_reg) &= (~DMA_ENABLE)))
#define DMA_INTSOFF(regs) ((((regs)->cond_reg) &= (~DMA_INT_ENAB)))
#define DMA_INTSON(regs) ((((regs)->cond_reg) |= (DMA_INT_ENAB)))
#define DMA_PUNTFIFO(regs) ((((regs)->cond_reg) |= DMA_FIFO_INV))
#define DMA_SETSTART(regs, addr) ((((regs)->st_addr) = (char *) addr))
#define DMA_BEGINDMA_W(regs) \
((((regs)->cond_reg |= (DMA_ST_WRITE|DMA_ENABLE|DMA_INT_ENAB))))
#define DMA_BEGINDMA_R(regs) \
((((regs)->cond_reg |= ((DMA_ENABLE|DMA_INT_ENAB)&(~DMA_ST_WRITE)))))
/* For certain DMA chips, we need to disable ints upon irq entry
* and turn them back on when we are done. So in any ESP interrupt
* handler you *must* call DMA_IRQ_ENTRY upon entry and DMA_IRQ_EXIT
* when leaving the handler. You have been warned...
*/
#define DMA_IRQ_ENTRY(dma, dregs) do { \
if(DMA_ISBROKEN(dma)) DMA_INTSOFF(dregs); \
} while (0)
#define DMA_IRQ_EXIT(dma, dregs) do { \
if(DMA_ISBROKEN(dma)) DMA_INTSON(dregs); \
} while(0)
/* Pause until counter runs out or BIT isn't set in the DMA condition
* register.
*/
extern __inline__ void sparc_dma_pause(struct sparc_dma_registers *regs,
unsigned long bit)
{
int ctr = 50000; /* Let's find some bugs ;) */
/* Busy wait until the bit is not set any more */
while((regs->cond_reg&bit) && (ctr>0)) {
ctr--;
__delay(5);
}
/* Check for bogus outcome. */
if(!ctr)
panic("DMA timeout");
}
/* Reset the friggin' thing... */
#define DMA_RESET(dma) do { \
struct sparc_dma_registers *regs = dma->regs; \
/* Let the current FIFO drain itself */ \
sparc_dma_pause(regs, (DMA_FIFO_ISDRAIN)); \
/* Reset the logic */ \
regs->cond_reg |= (DMA_RST_SCSI); /* assert */ \
__delay(400); /* let the bits set ;) */ \
regs->cond_reg &= ~(DMA_RST_SCSI); /* de-assert */ \
sparc_dma_enable_interrupts(regs); /* Re-enable interrupts */ \
/* Enable FAST transfers if available */ \
if(dma->revision>dvmarev1) regs->cond_reg |= DMA_3CLKS; \
dma->running = 0; \
} while(0)
#define for_each_dvma(dma) \
for((dma) = dma_chain; (dma); (dma) = (dma)->next)
extern int get_dma_list(char *);
extern int request_dma(unsigned int, __const__ char *);
extern void free_dma(unsigned int);
#endif /* !(_ASM_SPARC_DMA_H) */
|