1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
#ifndef _SPARC_PGTABLE_H
#define _SPARC_PGTABLE_H
/* asm-sparc/pgtable.h: Defines and functions used to work
* with Sparc page tables.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
*/
/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT 18
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT 18
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PGDIR_ALIGN(addr) (((addr)+PGDIR_SIZE-1)&PGDIR_MASK)
/*
* Just following the i386 lead, because it works on the Sparc sun4c
* machines. Two-level, therefore there is no real PMD.
*/
#define PTRS_PER_PTE 1024
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD 1024
/* the no. of pointers that fit on a page: this will go away */
#define PTRS_PER_PAGE (PAGE_SIZE/sizeof(void*))
/* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 8MB value just means that there will be a 8MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*/
#define VMALLOC_OFFSET (8*1024*1024)
#define VMALLOC_START ((high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_VMADDR(x) (TASK_SIZE + (unsigned long)(x))
/*
* Sparc page table fields.
*/
#define _PAGE_VALID 0x80000000 /* valid page */
#define _PAGE_WRITE 0x40000000 /* can be written to */
#define _PAGE_PRIV 0x20000000 /* bit to signify privileged page */
#define _PAGE_NOCACHE 0x10000000 /* non-cacheable page */
#define _PAGE_REF 0x02000000 /* Page has been accessed/referenced */
#define _PAGE_DIRTY 0x01000000 /* Page has been modified, is dirty */
#define _PAGE_COW 0x00800000 /* COW page, hardware ignores this bit (untested) */
/* Sparc sun4c mmu has only a writable bit. Thus if a page is valid it can be
* read in a load, and executed as code automatically. Although, the memory fault
* hardware does make a distinction between date-read faults and insn-read faults
* which is determined by which trap happened plus magic sync/async fault register
* values which must be checked in the actual fault handler.
*/
/* We want the swapper not to swap out page tables, thus dirty and writable
* so that the kernel can change the entries as needed. Also valid for
* obvious reasons.
*/
#define _PAGE_TABLE (_PAGE_VALID | _PAGE_WRITE | _PAGE_DIRTY)
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_REF | _PAGE_DIRTY)
#define PAGE_NONE __pgprot(_PAGE_VALID | _PAGE_REF)
#define PAGE_SHARED __pgprot(_PAGE_VALID | _PAGE_WRITE | _PAGE_REF)
#define PAGE_COPY __pgprot(_PAGE_VALID | _PAGE_REF | _PAGE_COW)
#define PAGE_READONLY __pgprot(_PAGE_VALID | _PAGE_REF)
#define PAGE_KERNEL __pgprot(_PAGE_VALID | _PAGE_WRITE | _PAGE_NOCACHE | _PAGE_REF | _PAGE_PRIV)
#define PAGE_INVALID __pgprot(_PAGE_PRIV)
#define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | _PAGE_REF | (x))
/* I define these like the i386 does because the check for text or data fault
* is done at trap time by the low level handler. Maybe I can set these bits
* then once determined. I leave them like this for now though.
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
extern unsigned long pg0[1024];
/*
* BAD_PAGETABLE is used when we need a bogus page-table, while
* BAD_PAGE is used for a bogus page.
*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);
extern unsigned long __zero_page(void);
#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#define ZERO_PAGE __zero_page()
/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR (8*sizeof(unsigned long)) /* better check this stuff */
/* to align the pointer to a pointer address */
#define PTR_MASK (~(sizeof(void*)-1))
#define SIZEOF_PTR_LOG2 2
/* to set the page-dir
*
* On the Sparc the page segments hold 64 pte's which means 256k/segment.
* Therefore there is no global idea of 'the' page directory, although we
* make a virtual one in kernel memory so that we can keep the stats on
* all the pages since not all can be loaded at once in the mmu.
*/
#define SET_PAGE_DIR(tsk,pgdir)
/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
extern unsigned long high_memory;
extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_VALID; }
extern inline int pte_inuse(pte_t *ptep) { return mem_map[MAP_NR(ptep)] > 1; }
extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; }
extern inline void pte_reuse(pte_t *ptep)
{
if(!(mem_map[MAP_NR(ptep)] & MAP_PAGE_RESERVED))
mem_map[MAP_NR(ptep)]++;
}
extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); }
extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~PAGE_MASK) != _PAGE_TABLE || pmd_val(pmd) > high_memory; }
extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_VALID; }
extern inline int pmd_inuse(pmd_t *pmdp) { return 0; }
extern inline void pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = 0; }
extern inline void pmd_reuse(pmd_t * pmdp) { }
extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); }
extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & ~PAGE_MASK) != _PAGE_TABLE || pgd_val(pgd) > high_memory; }
extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_VALID; }
extern inline int pgd_inuse(pgd_t *pgdp) { return mem_map[MAP_NR(pgdp)] > 1; }
extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; }
extern inline void pgd_reuse(pgd_t *pgdp)
{
if (!(mem_map[MAP_NR(pgdp)] & MAP_PAGE_RESERVED))
mem_map[MAP_NR(pgdp)]++;
}
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_VALID; }
extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_VALID; }
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_REF; }
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_REF; }
extern inline int pte_cow(pte_t pte) { return pte_val(pte) & _PAGE_COW; }
extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_VALID; return pte; }
extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_VALID; return pte; }
extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_REF; return pte; }
extern inline pte_t pte_uncow(pte_t pte) { pte_val(pte) &= ~_PAGE_COW; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_VALID; return pte; }
extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_VALID; return pte; }
extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_REF; return pte; }
extern inline pte_t pte_mkcow(pte_t pte) { pte_val(pte) |= _PAGE_COW; return pte; }
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
{ pte_t pte; pte_val(pte) = page | pgprot_val(pgprot); return pte; }
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
extern inline unsigned long pte_page(pte_t pte) { return pte_val(pte) & PAGE_MASK; }
extern inline unsigned long pmd_page(pmd_t pmd) { return pmd_val(pmd) & PAGE_MASK; }
extern inline unsigned long pgd_page(pgd_t pgd) { return pgd_val(pgd) & PAGE_MASK; }
extern inline void pgd_set(pgd_t * pgdp, pte_t * ptep)
{ pgd_val(*pgdp) = _PAGE_TABLE | (unsigned long) ptep; }
/* to find an entry in a page-table-directory */
#define PAGE_DIR_OFFSET(tsk,address) \
((((unsigned long)(address)) >> 22) + (pgd_t *) (tsk)->tss.cr3)
/* to find an entry in a page-table-directory */
extern inline pgd_t * pgd_offset(struct task_struct * tsk, unsigned long address)
{
return (pgd_t *) tsk->tss.cr3 + (address >> PGDIR_SHIFT);
}
/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) dir;
}
/* Find an entry in the third-level page table.. */
extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
{
return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
/*
* Allocate and free page tables. The xxx_kernel() versions are
* used to allocate a kernel page table - this turns on ASN bits
* if any, and marks the page tables reserved.
*/
extern inline void pte_free_kernel(pte_t * pte)
{
mem_map[MAP_NR(pte)] = 1;
free_page((unsigned long) pte);
}
extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
if (pmd_none(*pmd)) {
if (page) {
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
mem_map[MAP_NR(page)] = MAP_PAGE_RESERVED;
return page + address;
}
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
return NULL;
}
free_page((unsigned long) page);
}
if (pmd_bad(*pmd)) {
printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
extern inline void pmd_free_kernel(pmd_t * pmd)
{
}
extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address)
{
return (pmd_t *) pgd;
}
extern inline void pte_free(pte_t * pte)
{
free_page((unsigned long) pte);
}
extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
if (pmd_none(*pmd)) {
if (page) {
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
return page + address;
}
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
return NULL;
}
free_page((unsigned long) page);
}
if (pmd_bad(*pmd)) {
printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
extern inline void pmd_free(pmd_t * pmd)
{
}
extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
{
return (pmd_t *) pgd;
}
extern inline void pgd_free(pgd_t *pgd)
{
free_page((unsigned long) pgd);
}
extern inline pgd_t *pgd_alloc(void)
{
return (pgd_t *) get_free_page(GFP_KERNEL);
}
extern pgd_t swapper_pg_dir[1024];
#endif /* !(_SPARC_PGTABLE_H) */
|