1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
/*
* linux/kernel/fork.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* 'fork.c' contains the help-routines for the 'fork' system call
* (see also system_call.s).
* Fork is rather simple, once you get the hang of it, but the memory
* management can be a bitch. See 'mm/mm.c': 'copy_page_tables()'
*/
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/malloc.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <asm/system.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/uaccess.h>
int nr_tasks=1;
int nr_running=1;
unsigned long int total_forks=0; /* Handle normal Linux uptimes. */
int last_pid=0;
/* SLAB cache for mm_struct's. */
kmem_cache_t *mm_cachep;
/* SLAB cache for files structs */
kmem_cache_t *files_cachep;
struct task_struct *pidhash[PIDHASH_SZ];
spinlock_t pidhash_lock = SPIN_LOCK_UNLOCKED;
struct task_struct **tarray_freelist = NULL;
spinlock_t taskslot_lock = SPIN_LOCK_UNLOCKED;
/* UID task count cache, to prevent walking entire process list every
* single fork() operation.
*/
#define UIDHASH_SZ (PIDHASH_SZ >> 2)
static struct uid_taskcount {
struct uid_taskcount *next, **pprev;
unsigned short uid;
int task_count;
} *uidhash[UIDHASH_SZ];
#ifdef __SMP__
static spinlock_t uidhash_lock = SPIN_LOCK_UNLOCKED;
#endif
kmem_cache_t *uid_cachep;
#define uidhashfn(uid) (((uid >> 8) ^ uid) & (UIDHASH_SZ - 1))
static inline void uid_hash_insert(struct uid_taskcount *up, unsigned int hashent)
{
spin_lock(&uidhash_lock);
if((up->next = uidhash[hashent]) != NULL)
uidhash[hashent]->pprev = &up->next;
up->pprev = &uidhash[hashent];
uidhash[hashent] = up;
spin_unlock(&uidhash_lock);
}
static inline void uid_hash_remove(struct uid_taskcount *up)
{
spin_lock(&uidhash_lock);
if(up->next)
up->next->pprev = up->pprev;
*up->pprev = up->next;
spin_unlock(&uidhash_lock);
}
static inline struct uid_taskcount *uid_find(unsigned short uid, unsigned int hashent)
{
struct uid_taskcount *up;
spin_lock(&uidhash_lock);
for(up = uidhash[hashent]; (up && up->uid != uid); up = up->next)
;
spin_unlock(&uidhash_lock);
return up;
}
int charge_uid(struct task_struct *p, int count)
{
unsigned int hashent = uidhashfn(p->uid);
struct uid_taskcount *up = uid_find(p->uid, hashent);
if(up) {
int limit = p->rlim[RLIMIT_NPROC].rlim_cur;
int newcnt = up->task_count + count;
if(newcnt > limit)
return -EAGAIN;
else if(newcnt == 0) {
uid_hash_remove(up);
kmem_cache_free(uid_cachep, up);
return 0;
}
} else {
up = kmem_cache_alloc(uid_cachep, SLAB_KERNEL);
if(!up)
return -EAGAIN;
up->uid = p->uid;
up->task_count = 0;
uid_hash_insert(up, hashent);
}
up->task_count += count;
return 0;
}
__initfunc(void uidcache_init(void))
{
int i;
uid_cachep = kmem_cache_create("uid_cache", sizeof(struct uid_taskcount),
0,
SLAB_HWCACHE_ALIGN, NULL, NULL);
if(!uid_cachep)
panic("Cannot create uid taskcount SLAB cache\n");
for(i = 0; i < UIDHASH_SZ; i++)
uidhash[i] = 0;
}
static inline int find_empty_process(void)
{
struct task_struct **tslot;
if(current->uid) {
int error;
if(nr_tasks >= NR_TASKS - MIN_TASKS_LEFT_FOR_ROOT)
return -EAGAIN;
if((error = charge_uid(current, 1)) < 0)
return error;
}
tslot = get_free_taskslot();
if(tslot)
return tslot - &task[0];
return -EAGAIN;
}
#ifdef __SMP__
/* Protects next_safe and last_pid. */
static spinlock_t lastpid_lock = SPIN_LOCK_UNLOCKED;
#endif
static int get_pid(unsigned long flags)
{
static int next_safe = PID_MAX;
struct task_struct *p;
if (flags & CLONE_PID)
return current->pid;
spin_lock(&lastpid_lock);
if((++last_pid) & 0xffff8000) {
last_pid = 300; /* Skip daemons etc. */
goto inside;
}
if(last_pid >= next_safe) {
inside:
next_safe = PID_MAX;
read_lock(&tasklist_lock);
repeat:
for_each_task(p) {
if(p->pid == last_pid ||
p->pgrp == last_pid ||
p->session == last_pid) {
if(++last_pid >= next_safe) {
if(last_pid & 0xffff8000)
last_pid = 300;
next_safe = PID_MAX;
goto repeat;
}
}
if(p->pid > last_pid && next_safe > p->pid)
next_safe = p->pid;
if(p->pgrp > last_pid && next_safe > p->pgrp)
next_safe = p->pgrp;
if(p->session > last_pid && next_safe > p->session)
next_safe = p->session;
}
read_unlock(&tasklist_lock);
}
spin_unlock(&lastpid_lock);
return last_pid;
}
static inline int dup_mmap(struct mm_struct * mm)
{
struct vm_area_struct * mpnt, *tmp, **pprev;
mm->mmap = mm->mmap_cache = NULL;
flush_cache_mm(current->mm);
pprev = &mm->mmap;
for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
struct dentry *dentry;
tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!tmp) {
exit_mmap(mm);
flush_tlb_mm(current->mm);
return -ENOMEM;
}
*tmp = *mpnt;
tmp->vm_flags &= ~VM_LOCKED;
tmp->vm_mm = mm;
tmp->vm_next = NULL;
dentry = tmp->vm_dentry;
if (dentry) {
dentry->d_count++;
if (tmp->vm_flags & VM_DENYWRITE)
dentry->d_inode->i_writecount--;
/* insert tmp into the share list, just after mpnt */
if((tmp->vm_next_share = mpnt->vm_next_share) != NULL)
mpnt->vm_next_share->vm_pprev_share =
&tmp->vm_next_share;
mpnt->vm_next_share = tmp;
tmp->vm_pprev_share = &mpnt->vm_next_share;
}
if (copy_page_range(mm, current->mm, tmp)) {
exit_mmap(mm);
flush_tlb_mm(current->mm);
return -ENOMEM;
}
if (tmp->vm_ops && tmp->vm_ops->open)
tmp->vm_ops->open(tmp);
/* Ok, finally safe to link it in. */
if((tmp->vm_next = *pprev) != NULL)
(*pprev)->vm_pprev = &tmp->vm_next;
*pprev = tmp;
tmp->vm_pprev = pprev;
pprev = &tmp->vm_next;
}
flush_tlb_mm(current->mm);
return 0;
}
static inline int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
{
if (!(clone_flags & CLONE_VM)) {
struct mm_struct * mm = kmem_cache_alloc(mm_cachep, SLAB_KERNEL);
if (!mm)
return -1;
*mm = *current->mm;
init_new_context(mm);
mm->count = 1;
mm->def_flags = 0;
/* It has not run yet, so cannot be present in anyone's
* cache or tlb.
*/
mm->cpu_vm_mask = 0;
tsk->mm = mm;
tsk->min_flt = tsk->maj_flt = 0;
tsk->cmin_flt = tsk->cmaj_flt = 0;
tsk->nswap = tsk->cnswap = 0;
if (new_page_tables(tsk))
goto free_mm;
if (dup_mmap(mm)) {
free_page_tables(mm);
free_mm:
kmem_cache_free(mm_cachep, mm);
return -1;
}
return 0;
}
current->mm->count++;
SET_PAGE_DIR(tsk, current->mm->pgd);
return 0;
}
static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
{
if (clone_flags & CLONE_FS) {
current->fs->count++;
return 0;
}
tsk->fs = kmalloc(sizeof(*tsk->fs), GFP_KERNEL);
if (!tsk->fs)
return -1;
tsk->fs->count = 1;
tsk->fs->umask = current->fs->umask;
tsk->fs->root = dget(current->fs->root);
tsk->fs->pwd = dget(current->fs->pwd);
return 0;
}
/* return value is only accurate by +-sizeof(long)*8 fds */
/* XXX make this architecture specific */
static inline int __copy_fdset(unsigned long *d, unsigned long *src)
{
int i;
unsigned long *p = src;
unsigned long *max = src;
for (i = __FDSET_LONGS; i; --i) {
if ((*d++ = *p++) != 0)
max = p;
}
return (max - src)*sizeof(long)*8;
}
static inline int copy_fdset(fd_set *dst, fd_set *src)
{
return __copy_fdset(dst->fds_bits, src->fds_bits);
}
static inline int copy_files(unsigned long clone_flags, struct task_struct * tsk)
{
int i;
struct files_struct *oldf, *newf;
struct file **old_fds, **new_fds;
oldf = current->files;
if (clone_flags & CLONE_FILES) {
oldf->count++;
return 0;
}
newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
tsk->files = newf;
if (!newf)
return -1;
newf->count = 1;
newf->close_on_exec = oldf->close_on_exec;
i = copy_fdset(&newf->open_fds,&oldf->open_fds);
old_fds = oldf->fd;
new_fds = newf->fd;
for (; i != 0; i--) {
struct file * f = *old_fds;
old_fds++;
*new_fds = f;
new_fds++;
if (f)
f->f_count++;
}
return 0;
}
static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
{
if (clone_flags & CLONE_SIGHAND) {
atomic_inc(¤t->sig->count);
return 0;
}
tsk->sig = kmalloc(sizeof(*tsk->sig), GFP_KERNEL);
if (!tsk->sig)
return -1;
spin_lock_init(&tsk->sig->siglock);
atomic_set(&tsk->sig->count, 1);
memcpy(tsk->sig->action, current->sig->action, sizeof(tsk->sig->action));
return 0;
}
/*
* Ok, this is the main fork-routine. It copies the system process
* information (task[nr]) and sets up the necessary registers. It
* also copies the data segment in its entirety.
*/
int do_fork(unsigned long clone_flags, unsigned long usp, struct pt_regs *regs)
{
int nr;
int error = -ENOMEM;
struct task_struct *p;
lock_kernel();
p = alloc_task_struct();
if (!p)
goto bad_fork;
error = -EAGAIN;
nr = find_empty_process();
if (nr < 0)
goto bad_fork_free;
*p = *current;
if (p->exec_domain && p->exec_domain->module)
__MOD_INC_USE_COUNT(p->exec_domain->module);
if (p->binfmt && p->binfmt->module)
__MOD_INC_USE_COUNT(p->binfmt->module);
p->did_exec = 0;
p->swappable = 0;
p->state = TASK_UNINTERRUPTIBLE;
p->flags &= ~(PF_PTRACED|PF_TRACESYS|PF_SUPERPRIV);
p->flags |= PF_FORKNOEXEC;
p->pid = get_pid(clone_flags);
p->next_run = NULL;
p->prev_run = NULL;
p->p_pptr = p->p_opptr = current;
p->p_cptr = NULL;
init_waitqueue(&p->wait_chldexit);
p->signal = 0;
p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
init_timer(&p->real_timer);
p->real_timer.data = (unsigned long) p;
p->leader = 0; /* session leadership doesn't inherit */
p->tty_old_pgrp = 0;
p->times.tms_utime = p->times.tms_stime = 0;
p->times.tms_cutime = p->times.tms_cstime = 0;
#ifdef __SMP__
p->has_cpu = 0;
p->processor = NO_PROC_ID;
#endif
p->lock_depth = 0;
p->start_time = jiffies;
p->tarray_ptr = &task[nr];
*p->tarray_ptr = p;
SET_LINKS(p);
hash_pid(p);
nr_tasks++;
error = -ENOMEM;
/* copy all the process information */
if (copy_files(clone_flags, p))
goto bad_fork_cleanup;
if (copy_fs(clone_flags, p))
goto bad_fork_cleanup_files;
if (copy_sighand(clone_flags, p))
goto bad_fork_cleanup_fs;
if (copy_mm(clone_flags, p))
goto bad_fork_cleanup_sighand;
error = copy_thread(nr, clone_flags, usp, p, regs);
if (error)
goto bad_fork_cleanup_sighand;
p->semundo = NULL;
/* ok, now we should be set up.. */
p->swappable = 1;
p->exit_signal = clone_flags & CSIGNAL;
/*
* "share" dynamic priority between parent and child, thus the
* total amount of dynamic priorities in the system doesnt change,
* more scheduling fairness. This is only important in the first
* timeslice, on the long run the scheduling behaviour is unchanged.
*/
current->counter >>= 1;
p->counter = current->counter;
if(p->pid) {
wake_up_process(p); /* do this last, just in case */
} else {
p->state = TASK_RUNNING;
p->next_run = p->prev_run = p;
}
++total_forks;
error = p->pid;
goto fork_out;
bad_fork_cleanup_sighand:
exit_sighand(p);
bad_fork_cleanup_fs:
exit_fs(p);
bad_fork_cleanup_files:
exit_files(p);
bad_fork_cleanup:
charge_uid(current, -1);
if (p->exec_domain && p->exec_domain->module)
__MOD_DEC_USE_COUNT(p->exec_domain->module);
if (p->binfmt && p->binfmt->module)
__MOD_DEC_USE_COUNT(p->binfmt->module);
add_free_taskslot(p->tarray_ptr);
unhash_pid(p);
REMOVE_LINKS(p);
nr_tasks--;
bad_fork_free:
free_task_struct(p);
bad_fork:
fork_out:
unlock_kernel();
return error;
}
static void files_ctor(void *fp, kmem_cache_t *cachep, unsigned long flags)
{
struct files_struct *f = fp;
memset(f, 0, sizeof(*f));
}
__initfunc(void filescache_init(void))
{
files_cachep = kmem_cache_create("files_cache",
sizeof(struct files_struct),
0,
SLAB_HWCACHE_ALIGN,
files_ctor, NULL);
if (!files_cachep)
panic("Cannot create files cache");
}
|