1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
|
/*
* linux/kernel/sched.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* 1996-04-21 Modified by Ulrich Windl to make NTP work
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
* make semaphores SMP safe
* 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
*/
/*
* 'sched.c' is the main kernel file. It contains scheduling primitives
* (sleep_on, wakeup, schedule etc) as well as a number of simple system
* call functions (type getpid()), which just extract a field from
* current-task
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/fdreg.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/ptrace.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/tqueue.h>
#include <linux/resource.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/spinlock.h>
#include <linux/timex.h>
/*
* kernel variables
*/
int securelevel = 0; /* system security level */
long tick = (1000000 + HZ/2) / HZ; /* timer interrupt period */
/* The current time */
volatile struct timeval xtime __attribute__ ((aligned (16)));
/* Don't completely fail for HZ > 500. */
int tickadj = 500/HZ ? : 1; /* microsecs */
DECLARE_TASK_QUEUE(tq_timer);
DECLARE_TASK_QUEUE(tq_immediate);
DECLARE_TASK_QUEUE(tq_scheduler);
/*
* phase-lock loop variables
*/
/* TIME_ERROR prevents overwriting the CMOS clock */
int time_state = TIME_ERROR; /* clock synchronization status */
int time_status = STA_UNSYNC; /* clock status bits */
long time_offset = 0; /* time adjustment (us) */
long time_constant = 2; /* pll time constant */
long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
long time_precision = 1; /* clock precision (us) */
long time_maxerror = MAXPHASE; /* maximum error (us) */
long time_esterror = MAXPHASE; /* estimated error (us) */
long time_phase = 0; /* phase offset (scaled us) */
long time_freq = ((1000000 + HZ/2) % HZ - HZ/2) << SHIFT_USEC; /* frequency offset (scaled ppm) */
long time_adj = 0; /* tick adjust (scaled 1 / HZ) */
long time_reftime = 0; /* time at last adjustment (s) */
long time_adjust = 0;
long time_adjust_step = 0;
int need_resched = 0;
unsigned long event = 0;
extern int do_setitimer(int, struct itimerval *, struct itimerval *);
unsigned int * prof_buffer = NULL;
unsigned long prof_len = 0;
unsigned long prof_shift = 0;
extern void mem_use(void);
unsigned long volatile jiffies=0;
/*
* Init task must be ok at boot for the ix86 as we will check its signals
* via the SMP irq return path.
*/
struct task_struct *last_task_used_math = NULL;
struct task_struct * task[NR_TASKS] = {&init_task, };
struct kernel_stat kstat = { 0 };
void scheduling_functions_start_here(void) { }
static inline void add_to_runqueue(struct task_struct * p)
{
if (p->policy != SCHED_OTHER || p->counter > current->counter + 3)
need_resched = 1;
nr_running++;
(p->prev_run = init_task.prev_run)->next_run = p;
p->next_run = &init_task;
init_task.prev_run = p;
}
static inline void del_from_runqueue(struct task_struct * p)
{
struct task_struct *next = p->next_run;
struct task_struct *prev = p->prev_run;
nr_running--;
next->prev_run = prev;
prev->next_run = next;
p->next_run = NULL;
p->prev_run = NULL;
}
static inline void move_last_runqueue(struct task_struct * p)
{
struct task_struct *next = p->next_run;
struct task_struct *prev = p->prev_run;
/* remove from list */
next->prev_run = prev;
prev->next_run = next;
/* add back to list */
p->next_run = &init_task;
prev = init_task.prev_run;
init_task.prev_run = p;
p->prev_run = prev;
prev->next_run = p;
}
/*
* The tasklist_lock protects the linked list of processes.
*
* The scheduler lock is protecting against multiple entry
* into the scheduling code, and doesn't need to worry
* about interrupts (because interrupts cannot call the
* scheduler).
*
* The run-queue lock locks the parts that actually access
* and change the run-queues, and have to be interrupt-safe.
*/
rwlock_t tasklist_lock = RW_LOCK_UNLOCKED;
spinlock_t scheduler_lock = SPIN_LOCK_UNLOCKED;
spinlock_t runqueue_lock = SPIN_LOCK_UNLOCKED;
/*
* Wake up a process. Put it on the run-queue if it's not
* already there. The "current" process is always on the
* run-queue (except when the actual re-schedule is in
* progress), and as such you're allowed to do the simpler
* "current->state = TASK_RUNNING" to mark yourself runnable
* without the overhead of this.
*/
inline void wake_up_process(struct task_struct * p)
{
unsigned long flags;
spin_lock_irqsave(&runqueue_lock, flags);
p->state = TASK_RUNNING;
if (!p->next_run)
add_to_runqueue(p);
spin_unlock_irqrestore(&runqueue_lock, flags);
}
static void process_timeout(unsigned long __data)
{
struct task_struct * p = (struct task_struct *) __data;
p->timeout = 0;
wake_up_process(p);
}
/*
* This is the function that decides how desirable a process is..
* You can weigh different processes against each other depending
* on what CPU they've run on lately etc to try to handle cache
* and TLB miss penalties.
*
* Return values:
* -1000: never select this
* 0: out of time, recalculate counters (but it might still be
* selected)
* +ve: "goodness" value (the larger, the better)
* +1000: realtime process, select this.
*/
static inline int goodness(struct task_struct * p, struct task_struct * prev, int this_cpu)
{
int weight;
/*
* Realtime process, select the first one on the
* runqueue (taking priorities within processes
* into account).
*/
if (p->policy != SCHED_OTHER)
return 1000 + p->rt_priority;
/*
* Give the process a first-approximation goodness value
* according to the number of clock-ticks it has left.
*
* Don't do any other calculations if the time slice is
* over..
*/
weight = p->counter;
if (weight) {
#ifdef __SMP__
/* Give a largish advantage to the same processor... */
/* (this is equivalent to penalizing other processors) */
if (p->processor == this_cpu)
weight += PROC_CHANGE_PENALTY;
#endif
/* .. and a slight advantage to the current process */
if (p == prev)
weight += 1;
}
return weight;
}
/*
* Event timer code
*/
#define TVN_BITS 6
#define TVR_BITS 8
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
struct timer_vec {
int index;
struct timer_list *vec[TVN_SIZE];
};
struct timer_vec_root {
int index;
struct timer_list *vec[TVR_SIZE];
};
static struct timer_vec tv5 = { 0 };
static struct timer_vec tv4 = { 0 };
static struct timer_vec tv3 = { 0 };
static struct timer_vec tv2 = { 0 };
static struct timer_vec_root tv1 = { 0 };
static struct timer_vec * const tvecs[] = {
(struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5
};
#define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0]))
static unsigned long timer_jiffies = 0;
static inline void insert_timer(struct timer_list *timer,
struct timer_list **vec, int idx)
{
if ((timer->next = vec[idx]))
vec[idx]->prev = timer;
vec[idx] = timer;
timer->prev = (struct timer_list *)&vec[idx];
}
static inline void internal_add_timer(struct timer_list *timer)
{
/*
* must be cli-ed when calling this
*/
unsigned long expires = timer->expires;
unsigned long idx = expires - timer_jiffies;
if (idx < TVR_SIZE) {
int i = expires & TVR_MASK;
insert_timer(timer, tv1.vec, i);
} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
int i = (expires >> TVR_BITS) & TVN_MASK;
insert_timer(timer, tv2.vec, i);
} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
insert_timer(timer, tv3.vec, i);
} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
insert_timer(timer, tv4.vec, i);
} else if (expires < timer_jiffies) {
/* can happen if you add a timer with expires == jiffies,
* or you set a timer to go off in the past
*/
insert_timer(timer, tv1.vec, tv1.index);
} else if (idx < 0xffffffffUL) {
int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
insert_timer(timer, tv5.vec, i);
} else {
/* Can only get here on architectures with 64-bit jiffies */
timer->next = timer->prev = timer;
}
}
spinlock_t timerlist_lock = SPIN_LOCK_UNLOCKED;
void add_timer(struct timer_list *timer)
{
unsigned long flags;
spin_lock_irqsave(&timerlist_lock, flags);
internal_add_timer(timer);
spin_unlock_irqrestore(&timerlist_lock, flags);
}
static inline int detach_timer(struct timer_list *timer)
{
int ret = 0;
struct timer_list *next, *prev;
next = timer->next;
prev = timer->prev;
if (next) {
next->prev = prev;
}
if (prev) {
ret = 1;
prev->next = next;
}
return ret;
}
int del_timer(struct timer_list * timer)
{
int ret;
unsigned long flags;
spin_lock_irqsave(&timerlist_lock, flags);
ret = detach_timer(timer);
timer->next = timer->prev = 0;
spin_unlock_irqrestore(&timerlist_lock, flags);
return ret;
}
#ifdef __SMP__
#define idle_task (task[cpu_number_map[this_cpu]])
#define can_schedule(p) (!(p)->has_cpu)
#else
#define idle_task (&init_task)
#define can_schedule(p) (1)
#endif
/*
* 'schedule()' is the scheduler function. It's a very simple and nice
* scheduler: it's not perfect, but certainly works for most things.
*
* The goto is "interesting".
*
* NOTE!! Task 0 is the 'idle' task, which gets called when no other
* tasks can run. It can not be killed, and it cannot sleep. The 'state'
* information in task[0] is never used.
*/
asmlinkage void schedule(void)
{
int lock_depth;
struct task_struct * prev, * next;
unsigned long timeout;
int this_cpu;
need_resched = 0;
prev = current;
this_cpu = smp_processor_id();
if (local_irq_count[this_cpu])
goto scheduling_in_interrupt;
if (local_bh_count[this_cpu])
goto scheduling_in_interrupt;
release_kernel_lock(prev, this_cpu, lock_depth);
if (bh_active & bh_mask)
do_bottom_half();
spin_lock(&scheduler_lock);
spin_lock_irq(&runqueue_lock);
/* move an exhausted RR process to be last.. */
if (!prev->counter && prev->policy == SCHED_RR) {
prev->counter = prev->priority;
move_last_runqueue(prev);
}
timeout = 0;
switch (prev->state) {
case TASK_INTERRUPTIBLE:
if (signal_pending(prev))
goto makerunnable;
timeout = prev->timeout;
if (timeout && (timeout <= jiffies)) {
prev->timeout = 0;
timeout = 0;
makerunnable:
prev->state = TASK_RUNNING;
break;
}
default:
del_from_runqueue(prev);
case TASK_RUNNING:
}
{
struct task_struct * p = init_task.next_run;
/*
* This is subtle.
* Note how we can enable interrupts here, even
* though interrupts can add processes to the run-
* queue. This is because any new processes will
* be added to the front of the queue, so "p" above
* is a safe starting point.
* run-queue deletion and re-ordering is protected by
* the scheduler lock
*/
spin_unlock_irq(&runqueue_lock);
#ifdef __SMP__
prev->has_cpu = 0;
#endif
/*
* Note! there may appear new tasks on the run-queue during this, as
* interrupts are enabled. However, they will be put on front of the
* list, so our list starting at "p" is essentially fixed.
*/
/* this is the scheduler proper: */
{
int c = -1000;
next = idle_task;
while (p != &init_task) {
if (can_schedule(p)) {
int weight = goodness(p, prev, this_cpu);
if (weight > c)
c = weight, next = p;
}
p = p->next_run;
}
/* Do we need to re-calculate counters? */
if (!c) {
struct task_struct *p;
read_lock(&tasklist_lock);
for_each_task(p)
p->counter = (p->counter >> 1) + p->priority;
read_unlock(&tasklist_lock);
}
}
}
#ifdef __SMP__
next->has_cpu = 1;
next->processor = this_cpu;
#endif
if (prev != next) {
struct timer_list timer;
kstat.context_swtch++;
if (timeout) {
init_timer(&timer);
timer.expires = timeout;
timer.data = (unsigned long) prev;
timer.function = process_timeout;
add_timer(&timer);
}
get_mmu_context(next);
switch_to(prev,next);
if (timeout)
del_timer(&timer);
}
spin_unlock(&scheduler_lock);
reacquire_kernel_lock(prev, smp_processor_id(), lock_depth);
return;
scheduling_in_interrupt:
printk("Scheduling in interrupt\n");
*(int *)0 = 0;
}
rwlock_t waitqueue_lock = RW_LOCK_UNLOCKED;
/*
* wake_up doesn't wake up stopped processes - they have to be awakened
* with signals or similar.
*
* Note that we only need a read lock for the wait queue (and thus do not
* have to protect against interrupts), as the actual removal from the
* queue is handled by the process itself.
*/
void __wake_up(struct wait_queue **q, unsigned int mode)
{
struct wait_queue *next;
read_lock(&waitqueue_lock);
if (q && (next = *q)) {
struct wait_queue *head;
head = WAIT_QUEUE_HEAD(q);
while (next != head) {
struct task_struct *p = next->task;
next = next->next;
if (p->state & mode)
wake_up_process(p);
}
}
read_unlock(&waitqueue_lock);
}
/*
* Semaphores are implemented using a two-way counter:
* The "count" variable is decremented for each process
* that tries to sleep, while the "waking" variable is
* incremented when the "up()" code goes to wake up waiting
* processes.
*
* Notably, the inline "up()" and "down()" functions can
* efficiently test if they need to do any extra work (up
* needs to do something only if count was negative before
* the increment operation.
*
* waking_non_zero() (from asm/semaphore.h) must execute
* atomically.
*
* When __up() is called, the count was negative before
* incrementing it, and we need to wake up somebody.
*
* This routine adds one to the count of processes that need to
* wake up and exit. ALL waiting processes actually wake up but
* only the one that gets to the "waking" field first will gate
* through and acquire the semaphore. The others will go back
* to sleep.
*
* Note that these functions are only called when there is
* contention on the lock, and as such all this is the
* "non-critical" part of the whole semaphore business. The
* critical part is the inline stuff in <asm/semaphore.h>
* where we want to avoid any extra jumps and calls.
*/
void __up(struct semaphore *sem)
{
wake_one_more(sem);
wake_up(&sem->wait);
}
/*
* Perform the "down" function. Return zero for semaphore acquired,
* return negative for signalled out of the function.
*
* If called from __down, the return is ignored and the wait loop is
* not interruptible. This means that a task waiting on a semaphore
* using "down()" cannot be killed until someone does an "up()" on
* the semaphore.
*
* If called from __down_interruptible, the return value gets checked
* upon return. If the return value is negative then the task continues
* with the negative value in the return register (it can be tested by
* the caller).
*
* Either form may be used in conjunction with "up()".
*
*/
static inline int __do_down(struct semaphore * sem, int task_state)
{
struct task_struct *tsk = current;
struct wait_queue wait = { tsk, NULL };
int ret = 0;
tsk->state = task_state;
add_wait_queue(&sem->wait, &wait);
/*
* Ok, we're set up. sem->count is known to be less than zero
* so we must wait.
*
* We can let go the lock for purposes of waiting.
* We re-acquire it after awaking so as to protect
* all semaphore operations.
*
* If "up()" is called before we call waking_non_zero() then
* we will catch it right away. If it is called later then
* we will have to go through a wakeup cycle to catch it.
*
* Multiple waiters contend for the semaphore lock to see
* who gets to gate through and who has to wait some more.
*/
for (;;) {
if (waking_non_zero(sem)) /* are we waking up? */
break; /* yes, exit loop */
if (task_state == TASK_INTERRUPTIBLE && signal_pending(tsk)) {
ret = -EINTR; /* interrupted */
atomic_inc(&sem->count); /* give up on down operation */
break;
}
schedule();
tsk->state = task_state;
}
tsk->state = TASK_RUNNING;
remove_wait_queue(&sem->wait, &wait);
return ret;
}
void __down(struct semaphore * sem)
{
__do_down(sem,TASK_UNINTERRUPTIBLE);
}
int __down_interruptible(struct semaphore * sem)
{
return __do_down(sem,TASK_INTERRUPTIBLE);
}
static void FASTCALL(__sleep_on(struct wait_queue **p, int state));
static void __sleep_on(struct wait_queue **p, int state)
{
unsigned long flags;
struct wait_queue wait;
current->state = state;
wait.task = current;
write_lock_irqsave(&waitqueue_lock, flags);
__add_wait_queue(p, &wait);
write_unlock(&waitqueue_lock);
schedule();
write_lock_irq(&waitqueue_lock);
__remove_wait_queue(p, &wait);
write_unlock_irqrestore(&waitqueue_lock, flags);
}
void interruptible_sleep_on(struct wait_queue **p)
{
__sleep_on(p,TASK_INTERRUPTIBLE);
}
void sleep_on(struct wait_queue **p)
{
__sleep_on(p,TASK_UNINTERRUPTIBLE);
}
void scheduling_functions_end_here(void) { }
static inline void cascade_timers(struct timer_vec *tv)
{
/* cascade all the timers from tv up one level */
struct timer_list *timer;
timer = tv->vec[tv->index];
/*
* We are removing _all_ timers from the list, so we don't have to
* detach them individually, just clear the list afterwards.
*/
while (timer) {
struct timer_list *tmp = timer;
timer = timer->next;
internal_add_timer(tmp);
}
tv->vec[tv->index] = NULL;
tv->index = (tv->index + 1) & TVN_MASK;
}
static inline void run_timer_list(void)
{
spin_lock_irq(&timerlist_lock);
while ((long)(jiffies - timer_jiffies) >= 0) {
struct timer_list *timer;
if (!tv1.index) {
int n = 1;
do {
cascade_timers(tvecs[n]);
} while (tvecs[n]->index == 1 && ++n < NOOF_TVECS);
}
while ((timer = tv1.vec[tv1.index])) {
void (*fn)(unsigned long) = timer->function;
unsigned long data = timer->data;
detach_timer(timer);
timer->next = timer->prev = NULL;
spin_unlock_irq(&timerlist_lock);
fn(data);
spin_lock_irq(&timerlist_lock);
}
++timer_jiffies;
tv1.index = (tv1.index + 1) & TVR_MASK;
}
spin_unlock_irq(&timerlist_lock);
}
static inline void run_old_timers(void)
{
struct timer_struct *tp;
unsigned long mask;
for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
if (mask > timer_active)
break;
if (!(mask & timer_active))
continue;
if (tp->expires > jiffies)
continue;
timer_active &= ~mask;
tp->fn();
sti();
}
}
spinlock_t tqueue_lock;
void tqueue_bh(void)
{
run_task_queue(&tq_timer);
}
void immediate_bh(void)
{
run_task_queue(&tq_immediate);
}
unsigned long timer_active = 0;
struct timer_struct timer_table[32];
/*
* Hmm.. Changed this, as the GNU make sources (load.c) seems to
* imply that avenrun[] is the standard name for this kind of thing.
* Nothing else seems to be standardized: the fractional size etc
* all seem to differ on different machines.
*/
unsigned long avenrun[3] = { 0,0,0 };
/*
* Nr of active tasks - counted in fixed-point numbers
*/
static unsigned long count_active_tasks(void)
{
struct task_struct *p;
unsigned long nr = 0;
read_lock(&tasklist_lock);
for_each_task(p) {
if (p->pid &&
(p->state == TASK_RUNNING ||
p->state == TASK_UNINTERRUPTIBLE ||
p->state == TASK_SWAPPING))
nr += FIXED_1;
}
read_unlock(&tasklist_lock);
return nr;
}
static inline void calc_load(unsigned long ticks)
{
unsigned long active_tasks; /* fixed-point */
static int count = LOAD_FREQ;
count -= ticks;
if (count < 0) {
count += LOAD_FREQ;
active_tasks = count_active_tasks();
CALC_LOAD(avenrun[0], EXP_1, active_tasks);
CALC_LOAD(avenrun[1], EXP_5, active_tasks);
CALC_LOAD(avenrun[2], EXP_15, active_tasks);
}
}
/*
* this routine handles the overflow of the microsecond field
*
* The tricky bits of code to handle the accurate clock support
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
* They were originally developed for SUN and DEC kernels.
* All the kudos should go to Dave for this stuff.
*
*/
static void second_overflow(void)
{
long ltemp;
/* Bump the maxerror field */
time_maxerror += time_tolerance >> SHIFT_USEC;
if ( time_maxerror > MAXPHASE )
time_maxerror = MAXPHASE;
/*
* Leap second processing. If in leap-insert state at
* the end of the day, the system clock is set back one
* second; if in leap-delete state, the system clock is
* set ahead one second. The microtime() routine or
* external clock driver will insure that reported time
* is always monotonic. The ugly divides should be
* replaced.
*/
switch (time_state) {
case TIME_OK:
if (time_status & STA_INS)
time_state = TIME_INS;
else if (time_status & STA_DEL)
time_state = TIME_DEL;
break;
case TIME_INS:
if (xtime.tv_sec % 86400 == 0) {
xtime.tv_sec--;
time_state = TIME_OOP;
printk("Clock: inserting leap second 23:59:60 UTC\n");
}
break;
case TIME_DEL:
if ((xtime.tv_sec + 1) % 86400 == 0) {
xtime.tv_sec++;
time_state = TIME_WAIT;
printk("Clock: deleting leap second 23:59:59 UTC\n");
}
break;
case TIME_OOP:
time_state = TIME_WAIT;
break;
case TIME_WAIT:
if (!(time_status & (STA_INS | STA_DEL)))
time_state = TIME_OK;
}
/*
* Compute the phase adjustment for the next second. In
* PLL mode, the offset is reduced by a fixed factor
* times the time constant. In FLL mode the offset is
* used directly. In either mode, the maximum phase
* adjustment for each second is clamped so as to spread
* the adjustment over not more than the number of
* seconds between updates.
*/
if (time_offset < 0) {
ltemp = -time_offset;
if (!(time_status & STA_FLL))
ltemp >>= SHIFT_KG + time_constant;
if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
time_offset += ltemp;
time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
} else {
ltemp = time_offset;
if (!(time_status & STA_FLL))
ltemp >>= SHIFT_KG + time_constant;
if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
time_offset -= ltemp;
time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
}
/*
* Compute the frequency estimate and additional phase
* adjustment due to frequency error for the next
* second. When the PPS signal is engaged, gnaw on the
* watchdog counter and update the frequency computed by
* the pll and the PPS signal.
*/
pps_valid++;
if (pps_valid == PPS_VALID) {
pps_jitter = MAXTIME;
pps_stabil = MAXFREQ;
time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
STA_PPSWANDER | STA_PPSERROR);
}
ltemp = time_freq + pps_freq;
if (ltemp < 0)
time_adj -= -ltemp >>
(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
else
time_adj += ltemp >>
(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
#if HZ == 100
/* compensate for (HZ==100) != 128. Add 25% to get 125; => only 3% error */
if (time_adj < 0)
time_adj -= -time_adj >> 2;
else
time_adj += time_adj >> 2;
#endif
}
/* in the NTP reference this is called "hardclock()" */
static void update_wall_time_one_tick(void)
{
/*
* Advance the phase, once it gets to one microsecond, then
* advance the tick more.
*/
time_phase += time_adj;
if (time_phase <= -FINEUSEC) {
long ltemp = -time_phase >> SHIFT_SCALE;
time_phase += ltemp << SHIFT_SCALE;
xtime.tv_usec += tick + time_adjust_step - ltemp;
}
else if (time_phase >= FINEUSEC) {
long ltemp = time_phase >> SHIFT_SCALE;
time_phase -= ltemp << SHIFT_SCALE;
xtime.tv_usec += tick + time_adjust_step + ltemp;
} else
xtime.tv_usec += tick + time_adjust_step;
if (time_adjust) {
/* We are doing an adjtime thing.
*
* Modify the value of the tick for next time.
* Note that a positive delta means we want the clock
* to run fast. This means that the tick should be bigger
*
* Limit the amount of the step for *next* tick to be
* in the range -tickadj .. +tickadj
*/
if (time_adjust > tickadj)
time_adjust_step = tickadj;
else if (time_adjust < -tickadj)
time_adjust_step = -tickadj;
else
time_adjust_step = time_adjust;
/* Reduce by this step the amount of time left */
time_adjust -= time_adjust_step;
}
else
time_adjust_step = 0;
}
/*
* Using a loop looks inefficient, but "ticks" is
* usually just one (we shouldn't be losing ticks,
* we're doing this this way mainly for interrupt
* latency reasons, not because we think we'll
* have lots of lost timer ticks
*/
static void update_wall_time(unsigned long ticks)
{
do {
ticks--;
update_wall_time_one_tick();
} while (ticks);
if (xtime.tv_usec >= 1000000) {
xtime.tv_usec -= 1000000;
xtime.tv_sec++;
second_overflow();
}
}
static inline void do_process_times(struct task_struct *p,
unsigned long user, unsigned long system)
{
long psecs;
psecs = (p->times.tms_utime += user);
psecs += (p->times.tms_stime += system);
if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) {
/* Send SIGXCPU every second.. */
if (!(psecs % HZ))
send_sig(SIGXCPU, p, 1);
/* and SIGKILL when we go over max.. */
if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max)
send_sig(SIGKILL, p, 1);
}
}
static inline void do_it_virt(struct task_struct * p, unsigned long ticks)
{
unsigned long it_virt = p->it_virt_value;
if (it_virt) {
if (it_virt <= ticks) {
it_virt = ticks + p->it_virt_incr;
send_sig(SIGVTALRM, p, 1);
}
p->it_virt_value = it_virt - ticks;
}
}
static inline void do_it_prof(struct task_struct * p, unsigned long ticks)
{
unsigned long it_prof = p->it_prof_value;
if (it_prof) {
if (it_prof <= ticks) {
it_prof = ticks + p->it_prof_incr;
send_sig(SIGPROF, p, 1);
}
p->it_prof_value = it_prof - ticks;
}
}
void update_one_process(struct task_struct *p,
unsigned long ticks, unsigned long user, unsigned long system, int cpu)
{
p->per_cpu_utime[cpu] += user;
p->per_cpu_stime[cpu] += system;
do_process_times(p, user, system);
do_it_virt(p, user);
do_it_prof(p, ticks);
}
static void update_process_times(unsigned long ticks, unsigned long system)
{
/*
* SMP does this on a per-CPU basis elsewhere
*/
#ifndef __SMP__
struct task_struct * p = current;
unsigned long user = ticks - system;
if (p->pid) {
p->counter -= ticks;
if (p->counter < 0) {
p->counter = 0;
need_resched = 1;
}
if (p->priority < DEF_PRIORITY)
kstat.cpu_nice += user;
else
kstat.cpu_user += user;
kstat.cpu_system += system;
}
update_one_process(p, ticks, user, system, 0);
#endif
}
volatile unsigned long lost_ticks = 0;
static unsigned long lost_ticks_system = 0;
static inline void update_times(void)
{
unsigned long ticks;
unsigned long flags;
save_flags(flags);
cli();
ticks = lost_ticks;
lost_ticks = 0;
if (ticks) {
unsigned long system;
system = xchg(&lost_ticks_system, 0);
calc_load(ticks);
update_wall_time(ticks);
restore_flags(flags);
update_process_times(ticks, system);
} else
restore_flags(flags);
}
static void timer_bh(void)
{
update_times();
run_old_timers();
run_timer_list();
}
void do_timer(struct pt_regs * regs)
{
(*(unsigned long *)&jiffies)++;
lost_ticks++;
mark_bh(TIMER_BH);
if (!user_mode(regs))
lost_ticks_system++;
if (tq_timer)
mark_bh(TQUEUE_BH);
}
#ifndef __alpha__
/*
* For backwards compatibility? This can be done in libc so Alpha
* and all newer ports shouldn't need it.
*/
asmlinkage unsigned int sys_alarm(unsigned int seconds)
{
struct itimerval it_new, it_old;
unsigned int oldalarm;
it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
it_new.it_value.tv_sec = seconds;
it_new.it_value.tv_usec = 0;
do_setitimer(ITIMER_REAL, &it_new, &it_old);
oldalarm = it_old.it_value.tv_sec;
/* ehhh.. We can't return 0 if we have an alarm pending.. */
/* And we'd better return too much than too little anyway */
if (it_old.it_value.tv_usec)
oldalarm++;
return oldalarm;
}
/*
* The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
* should be moved into arch/i386 instead?
*/
asmlinkage int sys_getpid(void)
{
/* This is SMP safe - current->pid doesnt change */
return current->pid;
}
/*
* This is not strictly SMP safe: p_opptr could change
* from under us. However, rather than getting any lock
* we can use an optimistic algorithm: get the parent
* pid, and go back and check that the parent is still
* the same. If it has changed (which is extremely unlikely
* indeed), we just try again..
*
* NOTE! This depends on the fact that even if we _do_
* get an old value of "parent", we can happily dereference
* the pointer: we just can't necessarily trust the result
* until we know that the parent pointer is valid.
*
* The "mb()" macro is a memory barrier - a synchronizing
* event. It also makes sure that gcc doesn't optimize
* away the necessary memory references.. The barrier doesn't
* have to have all that strong semantics: on x86 we don't
* really require a synchronizing instruction, for example.
* The barrier is more important for code generation than
* for any real memory ordering semantics (even if there is
* a small window for a race, using the old pointer is
* harmless for a while).
*/
asmlinkage int sys_getppid(void)
{
int pid;
struct task_struct * me = current;
struct task_struct * parent;
parent = me->p_opptr;
for (;;) {
pid = parent->pid;
#if __SMP__
{
struct task_struct *old = parent;
mb();
parent = me->p_opptr;
if (old != parent)
continue;
}
#endif
break;
}
return pid;
}
asmlinkage int sys_getuid(void)
{
/* Only we change this so SMP safe */
return current->uid;
}
asmlinkage int sys_geteuid(void)
{
/* Only we change this so SMP safe */
return current->euid;
}
asmlinkage int sys_getgid(void)
{
/* Only we change this so SMP safe */
return current->gid;
}
asmlinkage int sys_getegid(void)
{
/* Only we change this so SMP safe */
return current->egid;
}
/*
* This has been replaced by sys_setpriority. Maybe it should be
* moved into the arch dependent tree for those ports that require
* it for backward compatibility?
*/
asmlinkage int sys_nice(int increment)
{
unsigned long newprio;
int increase = 0;
/*
* Setpriority might change our priority at the same moment.
* We don't have to worry. Conceptually one call occurs first
* and we have a single winner.
*/
newprio = increment;
if (increment < 0) {
if (!suser())
return -EPERM;
newprio = -increment;
increase = 1;
}
if (newprio > 40)
newprio = 40;
/*
* do a "normalization" of the priority (traditionally
* unix nice values are -20..20, linux doesn't really
* use that kind of thing, but uses the length of the
* timeslice instead (default 150 msec). The rounding is
* why we want to avoid negative values.
*/
newprio = (newprio * DEF_PRIORITY + 10) / 20;
increment = newprio;
if (increase)
increment = -increment;
/*
* Current->priority can change between this point
* and the assignment. We are assigning not doing add/subs
* so thats ok. Conceptually a process might just instantaneously
* read the value we stomp over. I don't think that is an issue
* unless posix makes it one. If so we can loop on changes
* to current->priority.
*/
newprio = current->priority - increment;
if ((signed) newprio < 1)
newprio = 1;
if (newprio > DEF_PRIORITY*2)
newprio = DEF_PRIORITY*2;
current->priority = newprio;
return 0;
}
#endif
static inline struct task_struct *find_process_by_pid(pid_t pid)
{
if (pid)
return find_task_by_pid(pid);
else
return current;
}
static int setscheduler(pid_t pid, int policy,
struct sched_param *param)
{
struct sched_param lp;
struct task_struct *p;
if (!param || pid < 0)
return -EINVAL;
if (copy_from_user(&lp, param, sizeof(struct sched_param)))
return -EFAULT;
p = find_process_by_pid(pid);
if (!p)
return -ESRCH;
if (policy < 0)
policy = p->policy;
else if (policy != SCHED_FIFO && policy != SCHED_RR &&
policy != SCHED_OTHER)
return -EINVAL;
/*
* Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
* priority for SCHED_OTHER is 0.
*/
if (lp.sched_priority < 0 || lp.sched_priority > 99)
return -EINVAL;
if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
return -EINVAL;
if ((policy == SCHED_FIFO || policy == SCHED_RR) && !suser())
return -EPERM;
if ((current->euid != p->euid) && (current->euid != p->uid) &&
!suser())
return -EPERM;
p->policy = policy;
p->rt_priority = lp.sched_priority;
spin_lock(&scheduler_lock);
spin_lock_irq(&runqueue_lock);
if (p->next_run)
move_last_runqueue(p);
spin_unlock_irq(&runqueue_lock);
spin_unlock(&scheduler_lock);
need_resched = 1;
return 0;
}
asmlinkage int sys_sched_setscheduler(pid_t pid, int policy,
struct sched_param *param)
{
return setscheduler(pid, policy, param);
}
asmlinkage int sys_sched_setparam(pid_t pid, struct sched_param *param)
{
return setscheduler(pid, -1, param);
}
asmlinkage int sys_sched_getscheduler(pid_t pid)
{
struct task_struct *p;
if (pid < 0)
return -EINVAL;
p = find_process_by_pid(pid);
if (!p)
return -ESRCH;
return p->policy;
}
asmlinkage int sys_sched_getparam(pid_t pid, struct sched_param *param)
{
struct task_struct *p;
struct sched_param lp;
if (!param || pid < 0)
return -EINVAL;
p = find_process_by_pid(pid);
if (!p)
return -ESRCH;
lp.sched_priority = p->rt_priority;
return copy_to_user(param, &lp, sizeof(struct sched_param)) ? -EFAULT : 0;
}
asmlinkage int sys_sched_yield(void)
{
/*
* This is not really right. We'd like to reschedule
* just _once_ with this process having a zero count.
*/
current->counter = 0;
spin_lock(&scheduler_lock);
spin_lock_irq(&runqueue_lock);
move_last_runqueue(current);
spin_unlock_irq(&runqueue_lock);
spin_unlock(&scheduler_lock);
need_resched = 1;
return 0;
}
asmlinkage int sys_sched_get_priority_max(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = 99;
break;
case SCHED_OTHER:
ret = 0;
break;
}
return ret;
}
asmlinkage int sys_sched_get_priority_min(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = 1;
break;
case SCHED_OTHER:
ret = 0;
}
return ret;
}
asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
{
struct timespec t;
t.tv_sec = 0;
t.tv_nsec = 150000;
if (copy_to_user(interval, &t, sizeof(struct timespec)))
return -EFAULT;
return 0;
}
asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
{
struct timespec t;
unsigned long expire;
if(copy_from_user(&t, rqtp, sizeof(struct timespec)))
return -EFAULT;
if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0)
return -EINVAL;
if (t.tv_sec == 0 && t.tv_nsec <= 2000000L &&
current->policy != SCHED_OTHER)
{
/*
* Short delay requests up to 2 ms will be handled with
* high precision by a busy wait for all real-time processes.
*
* Its important on SMP not to do this holding locks.
*/
udelay((t.tv_nsec + 999) / 1000);
return 0;
}
expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec) + jiffies;
current->timeout = expire;
current->state = TASK_INTERRUPTIBLE;
schedule();
if (expire > jiffies) {
if (rmtp) {
jiffies_to_timespec(expire - jiffies -
(expire > jiffies + 1), &t);
if (copy_to_user(rmtp, &t, sizeof(struct timespec)))
return -EFAULT;
}
return -EINTR;
}
return 0;
}
static void show_task(int nr,struct task_struct * p)
{
unsigned long free = 0;
static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr);
if (((unsigned) p->state) < sizeof(stat_nam)/sizeof(char *))
printk(stat_nam[p->state]);
else
printk(" ");
#if ((~0UL) == 0xffffffff)
if (p == current)
printk(" current ");
else
printk(" %08lX ", thread_saved_pc(&p->tss));
#else
if (p == current)
printk(" current task ");
else
printk(" %016lx ", thread_saved_pc(&p->tss));
#endif
#if 0
for (free = 1; free < PAGE_SIZE/sizeof(long) ; free++) {
if (((unsigned long *)p->kernel_stack_page)[free])
break;
}
#endif
printk("%5lu %5d %6d ", free*sizeof(long), p->pid, p->p_pptr->pid);
if (p->p_cptr)
printk("%5d ", p->p_cptr->pid);
else
printk(" ");
if (p->p_ysptr)
printk("%7d", p->p_ysptr->pid);
else
printk(" ");
if (p->p_osptr)
printk(" %5d\n", p->p_osptr->pid);
else
printk("\n");
{
extern char * render_sigset_t(sigset_t *set, char *buffer);
struct signal_queue *q;
char s[sizeof(sigset_t)*2+1], b[sizeof(sigset_t)*2+1];
render_sigset_t(&p->signal, s);
render_sigset_t(&p->blocked, b);
printk(" sig: %d %s %s :", signal_pending(p), s, b);
for (q = p->sigqueue; q ; q = q->next)
printk(" %d", q->info.si_signo);
printk(" X\n");
}
}
void show_state(void)
{
struct task_struct *p;
#if ((~0UL) == 0xffffffff)
printk("\n"
" free sibling\n");
printk(" task PC stack pid father child younger older\n");
#else
printk("\n"
" free sibling\n");
printk(" task PC stack pid father child younger older\n");
#endif
read_lock(&tasklist_lock);
for_each_task(p)
show_task((p->tarray_ptr - &task[0]),p);
read_unlock(&tasklist_lock);
}
__initfunc(void sched_init(void))
{
/*
* We have to do a little magic to get the first
* process right in SMP mode.
*/
int cpu=hard_smp_processor_id();
int nr = NR_TASKS;
init_task.processor=cpu;
/* Init task array free list and pidhash table. */
while(--nr > 0)
add_free_taskslot(&task[nr]);
for(nr = 0; nr < PIDHASH_SZ; nr++)
pidhash[nr] = NULL;
init_bh(TIMER_BH, timer_bh);
init_bh(TQUEUE_BH, tqueue_bh);
init_bh(IMMEDIATE_BH, immediate_bh);
}
|