1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
|
/*
* linux/kernel/sched.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* 1996-04-21 Modified by Ulrich Windl to make NTP work
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
* make semaphores SMP safe
* 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
* 1998-11-19 Implemented schedule_timeout() and related stuff
* by Andrea Arcangeli
* 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
* serialize accesses to xtime/lost_ticks).
* Copyright (C) 1998 Andrea Arcangeli
* 1998-12-28 Implemented better SMP scheduling by Ingo Molnar
*/
/*
* 'sched.c' is the main kernel file. It contains scheduling primitives
* (sleep_on, wakeup, schedule etc) as well as a number of simple system
* call functions (type getpid()), which just extract a field from
* current-task
*/
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/fdreg.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <linux/timex.h>
/*
* kernel variables
*/
unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
long tick = (1000000 + HZ/2) / HZ; /* timer interrupt period */
/* The current time */
volatile struct timeval xtime __attribute__ ((aligned (16)));
/* Don't completely fail for HZ > 500. */
int tickadj = 500/HZ ? : 1; /* microsecs */
DECLARE_TASK_QUEUE(tq_timer);
DECLARE_TASK_QUEUE(tq_immediate);
DECLARE_TASK_QUEUE(tq_scheduler);
/*
* phase-lock loop variables
*/
/* TIME_ERROR prevents overwriting the CMOS clock */
int time_state = TIME_ERROR; /* clock synchronization status */
int time_status = STA_UNSYNC; /* clock status bits */
long time_offset = 0; /* time adjustment (us) */
long time_constant = 2; /* pll time constant */
long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
long time_precision = 1; /* clock precision (us) */
long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
long time_phase = 0; /* phase offset (scaled us) */
long time_freq = ((1000000 + HZ/2) % HZ - HZ/2) << SHIFT_USEC; /* frequency offset (scaled ppm) */
long time_adj = 0; /* tick adjust (scaled 1 / HZ) */
long time_reftime = 0; /* time at last adjustment (s) */
long time_adjust = 0;
long time_adjust_step = 0;
unsigned long event = 0;
extern int do_setitimer(int, struct itimerval *, struct itimerval *);
unsigned int * prof_buffer = NULL;
unsigned long prof_len = 0;
unsigned long prof_shift = 0;
extern void mem_use(void);
unsigned long volatile jiffies=0;
/*
* Init task must be ok at boot for the ix86 as we will check its signals
* via the SMP irq return path.
*/
struct task_struct * task[NR_TASKS] = {&init_task, };
struct kernel_stat kstat = { 0 };
void scheduling_functions_start_here(void) { }
#ifdef __SMP__
static void reschedule_idle_slow(struct task_struct * p)
{
/*
* (see reschedule_idle() for an explanation first ...)
*
* Pass #2
*
* We try to find another (idle) CPU for this woken-up process.
*
* On SMP, we mostly try to see if the CPU the task used
* to run on is idle.. but we will use another idle CPU too,
* at this point we already know that this CPU is not
* willing to reschedule in the near future.
*
* An idle CPU is definitely wasted, especially if this CPU is
* running long-timeslice processes. The following algorithm is
* pretty good at finding the best idle CPU to send this process
* to.
*
* [We can try to preempt low-priority processes on other CPUs in
* 2.3. Also we can try to use the avg_slice value to predict
* 'likely reschedule' events even on other CPUs.]
*/
int best_cpu = p->processor, this_cpu = smp_processor_id();
struct task_struct **idle = task, *tsk, *target_tsk;
int i = smp_num_cpus;
target_tsk = NULL;
do {
tsk = *idle;
idle++;
if (tsk->has_cpu) {
if (tsk->processor == this_cpu)
continue;
target_tsk = tsk;
if (tsk->processor == best_cpu) {
/*
* bingo, we couldnt get a better
* CPU, activate it.
*/
goto send; /* this one helps GCC ... */
}
}
} while (--i > 0);
/*
* found any idle CPU?
*/
if (target_tsk) {
send:
target_tsk->need_resched = 1;
smp_send_reschedule(target_tsk->processor);
return;
}
}
#endif /* __SMP__ */
/*
* If there is a dependency between p1 and p2,
* don't be too eager to go into the slow schedule.
* In particular, if p1 and p2 both want the kernel
* lock, there is no point in trying to make them
* extremely parallel..
*
* (No lock - lock_depth < 0)
*/
#define related(p1,p2) ((p1)->lock_depth >= 0 && (p2)->lock_depth >= 0)
static inline void reschedule_idle(struct task_struct * p)
{
if (p->policy != SCHED_OTHER || p->counter > current->counter + 3) {
current->need_resched = 1;
return;
}
#ifdef __SMP__
/*
* ("wakeup()" should not be called before we've initialized
* SMP completely.
* Basically a not-yet initialized SMP subsystem can be
* considered as a not-yet working scheduler, simply dont use
* it before it's up and running ...)
*
* SMP rescheduling is done in 2 passes:
* - pass #1: faster: 'quick decisions'
* - pass #2: slower: 'lets try and find another CPU'
*/
/*
* Pass #1
*
* There are two metrics here:
*
* first, a 'cutoff' interval, currently 0-200 usecs on
* x86 CPUs, depending on the size of the 'SMP-local cache'.
* If the current process has longer average timeslices than
* this, then we utilize the idle CPU.
*
* second, if the wakeup comes from a process context,
* then the two processes are 'related'. (they form a
* 'gang')
*
* An idle CPU is almost always a bad thing, thus we skip
* the idle-CPU utilization only if both these conditions
* are true. (ie. a 'process-gang' rescheduling with rather
* high frequency should stay on the same CPU).
*
* [We can switch to something more finegrained in 2.3.]
*/
if ((current->avg_slice < cacheflush_time) && related(current, p))
return;
reschedule_idle_slow(p);
#endif /* __SMP__ */
}
/*
* Careful!
*
* This has to add the process to the _beginning_ of the
* run-queue, not the end. See the comment about "This is
* subtle" in the scheduler proper..
*/
static inline void add_to_runqueue(struct task_struct * p)
{
struct task_struct *next = init_task.next_run;
p->prev_run = &init_task;
init_task.next_run = p;
p->next_run = next;
next->prev_run = p;
nr_running++;
}
static inline void del_from_runqueue(struct task_struct * p)
{
struct task_struct *next = p->next_run;
struct task_struct *prev = p->prev_run;
nr_running--;
next->prev_run = prev;
prev->next_run = next;
p->next_run = NULL;
p->prev_run = NULL;
}
static inline void move_last_runqueue(struct task_struct * p)
{
struct task_struct *next = p->next_run;
struct task_struct *prev = p->prev_run;
/* remove from list */
next->prev_run = prev;
prev->next_run = next;
/* add back to list */
p->next_run = &init_task;
prev = init_task.prev_run;
init_task.prev_run = p;
p->prev_run = prev;
prev->next_run = p;
}
static inline void move_first_runqueue(struct task_struct * p)
{
struct task_struct *next = p->next_run;
struct task_struct *prev = p->prev_run;
/* remove from list */
next->prev_run = prev;
prev->next_run = next;
/* add back to list */
p->prev_run = &init_task;
next = init_task.next_run;
init_task.next_run = p;
p->next_run = next;
next->prev_run = p;
}
/*
* The tasklist_lock protects the linked list of processes.
*
* The scheduler lock is protecting against multiple entry
* into the scheduling code, and doesn't need to worry
* about interrupts (because interrupts cannot call the
* scheduler).
*
* The run-queue lock locks the parts that actually access
* and change the run-queues, and have to be interrupt-safe.
*/
spinlock_t scheduler_lock = SPIN_LOCK_UNLOCKED; /* should be acquired first */
spinlock_t runqueue_lock = SPIN_LOCK_UNLOCKED; /* second */
rwlock_t tasklist_lock = RW_LOCK_UNLOCKED; /* third */
/*
* Wake up a process. Put it on the run-queue if it's not
* already there. The "current" process is always on the
* run-queue (except when the actual re-schedule is in
* progress), and as such you're allowed to do the simpler
* "current->state = TASK_RUNNING" to mark yourself runnable
* without the overhead of this.
*/
void wake_up_process(struct task_struct * p)
{
unsigned long flags;
spin_lock_irqsave(&runqueue_lock, flags);
p->state = TASK_RUNNING;
if (!p->next_run) {
add_to_runqueue(p);
reschedule_idle(p);
}
spin_unlock_irqrestore(&runqueue_lock, flags);
}
static void process_timeout(unsigned long __data)
{
struct task_struct * p = (struct task_struct *) __data;
wake_up_process(p);
}
/*
* This is the function that decides how desirable a process is..
* You can weigh different processes against each other depending
* on what CPU they've run on lately etc to try to handle cache
* and TLB miss penalties.
*
* Return values:
* -1000: never select this
* 0: out of time, recalculate counters (but it might still be
* selected)
* +ve: "goodness" value (the larger, the better)
* +1000: realtime process, select this.
*/
static inline int goodness(struct task_struct * p, struct task_struct * prev, int this_cpu)
{
int policy = p->policy;
int weight;
if (policy & SCHED_YIELD) {
p->policy = policy & ~SCHED_YIELD;
return 0;
}
/*
* Realtime process, select the first one on the
* runqueue (taking priorities within processes
* into account).
*/
if (policy != SCHED_OTHER)
return 1000 + p->rt_priority;
/*
* Give the process a first-approximation goodness value
* according to the number of clock-ticks it has left.
*
* Don't do any other calculations if the time slice is
* over..
*/
weight = p->counter;
if (weight) {
#ifdef __SMP__
/* Give a largish advantage to the same processor... */
/* (this is equivalent to penalizing other processors) */
if (p->processor == this_cpu)
weight += PROC_CHANGE_PENALTY;
#endif
/* .. and a slight advantage to the current thread */
if (p->mm == prev->mm)
weight += 1;
weight += p->priority;
}
return weight;
}
/*
* Event timer code
*/
#define TVN_BITS 6
#define TVR_BITS 8
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
struct timer_vec {
int index;
struct timer_list *vec[TVN_SIZE];
};
struct timer_vec_root {
int index;
struct timer_list *vec[TVR_SIZE];
};
static struct timer_vec tv5 = { 0 };
static struct timer_vec tv4 = { 0 };
static struct timer_vec tv3 = { 0 };
static struct timer_vec tv2 = { 0 };
static struct timer_vec_root tv1 = { 0 };
static struct timer_vec * const tvecs[] = {
(struct timer_vec *)&tv1, &tv2, &tv3, &tv4, &tv5
};
#define NOOF_TVECS (sizeof(tvecs) / sizeof(tvecs[0]))
static unsigned long timer_jiffies = 0;
static inline void insert_timer(struct timer_list *timer,
struct timer_list **vec, int idx)
{
if ((timer->next = vec[idx]))
vec[idx]->prev = timer;
vec[idx] = timer;
timer->prev = (struct timer_list *)&vec[idx];
}
static inline void internal_add_timer(struct timer_list *timer)
{
/*
* must be cli-ed when calling this
*/
unsigned long expires = timer->expires;
unsigned long idx = expires - timer_jiffies;
if (idx < TVR_SIZE) {
int i = expires & TVR_MASK;
insert_timer(timer, tv1.vec, i);
} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
int i = (expires >> TVR_BITS) & TVN_MASK;
insert_timer(timer, tv2.vec, i);
} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
insert_timer(timer, tv3.vec, i);
} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
insert_timer(timer, tv4.vec, i);
} else if ((signed long) idx < 0) {
/* can happen if you add a timer with expires == jiffies,
* or you set a timer to go off in the past
*/
insert_timer(timer, tv1.vec, tv1.index);
} else if (idx <= 0xffffffffUL) {
int i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
insert_timer(timer, tv5.vec, i);
} else {
/* Can only get here on architectures with 64-bit jiffies */
timer->next = timer->prev = timer;
}
}
spinlock_t timerlist_lock = SPIN_LOCK_UNLOCKED;
void add_timer(struct timer_list *timer)
{
unsigned long flags;
spin_lock_irqsave(&timerlist_lock, flags);
internal_add_timer(timer);
spin_unlock_irqrestore(&timerlist_lock, flags);
}
static inline int detach_timer(struct timer_list *timer)
{
struct timer_list *prev = timer->prev;
if (prev) {
struct timer_list *next = timer->next;
prev->next = next;
if (next)
next->prev = prev;
return 1;
}
return 0;
}
void mod_timer(struct timer_list *timer, unsigned long expires)
{
unsigned long flags;
spin_lock_irqsave(&timerlist_lock, flags);
timer->expires = expires;
detach_timer(timer);
internal_add_timer(timer);
spin_unlock_irqrestore(&timerlist_lock, flags);
}
int del_timer(struct timer_list * timer)
{
int ret;
unsigned long flags;
spin_lock_irqsave(&timerlist_lock, flags);
ret = detach_timer(timer);
timer->next = timer->prev = 0;
spin_unlock_irqrestore(&timerlist_lock, flags);
return ret;
}
#ifdef __SMP__
#define idle_task (task[cpu_number_map[this_cpu]])
#define can_schedule(p) (!(p)->has_cpu)
#else
#define idle_task (&init_task)
#define can_schedule(p) (1)
#endif
signed long schedule_timeout(signed long timeout)
{
struct timer_list timer;
unsigned long expire;
switch (timeout)
{
case MAX_SCHEDULE_TIMEOUT:
/*
* These two special cases are useful to be comfortable
* in the caller. Nothing more. We could take
* MAX_SCHEDULE_TIMEOUT from one of the negative value
* but I' d like to return a valid offset (>=0) to allow
* the caller to do everything it want with the retval.
*/
schedule();
goto out;
default:
/*
* Another bit of PARANOID. Note that the retval will be
* 0 since no piece of kernel is supposed to do a check
* for a negative retval of schedule_timeout() (since it
* should never happens anyway). You just have the printk()
* that will tell you if something is gone wrong and where.
*/
if (timeout < 0)
{
printk(KERN_ERR "schedule_timeout: wrong timeout "
"value %lx from %p\n", timeout,
__builtin_return_address(0));
goto out;
}
}
expire = timeout + jiffies;
init_timer(&timer);
timer.expires = expire;
timer.data = (unsigned long) current;
timer.function = process_timeout;
add_timer(&timer);
schedule();
del_timer(&timer);
timeout = expire - jiffies;
out:
return timeout < 0 ? 0 : timeout;
}
/*
* This one aligns per-CPU data on cacheline boundaries.
*/
static union {
struct schedule_data {
struct task_struct * prev;
long prevstate;
cycles_t last_schedule;
} schedule_data;
char __pad [L1_CACHE_BYTES];
} aligned_data [NR_CPUS] __cacheline_aligned = { {{&init_task,0}}};
static inline void __schedule_tail (void)
{
#ifdef __SMP__
struct schedule_data * sched_data;
/*
* We might have switched CPUs:
*/
sched_data = & aligned_data[smp_processor_id()].schedule_data;
/*
* Subtle. In the rare event that we got a wakeup to 'prev' just
* during the reschedule (this is possible, the scheduler is pretty
* parallel), we should do another reschedule in the next task's
* context. schedule() will do the right thing next time around.
* this is equivalent to 'delaying' the wakeup until the reschedule
* has finished.
*/
if (sched_data->prev->state != sched_data->prevstate)
current->need_resched = 1;
/*
* Release the previous process ...
*
* We have dropped all locks, and we must make sure that we
* only mark the previous process as no longer having a CPU
* after all other state has been seen by other CPU's. Thus
* the write memory barrier!
*/
wmb();
sched_data->prev->has_cpu = 0;
#endif /* __SMP__ */
}
/*
* schedule_tail() is getting called from the fork return path. This
* cleans up all remaining scheduler things, without impacting the
* common case.
*/
void schedule_tail (void)
{
__schedule_tail();
}
/*
* 'schedule()' is the scheduler function. It's a very simple and nice
* scheduler: it's not perfect, but certainly works for most things.
*
* The goto is "interesting".
*
* NOTE!! Task 0 is the 'idle' task, which gets called when no other
* tasks can run. It can not be killed, and it cannot sleep. The 'state'
* information in task[0] is never used.
*/
asmlinkage void schedule(void)
{
struct schedule_data * sched_data;
struct task_struct * prev, * next;
int this_cpu;
prev = current;
this_cpu = prev->processor;
/*
* 'sched_data' is protected by the fact that we can run
* only one process per CPU.
*/
sched_data = & aligned_data[this_cpu].schedule_data;
if (in_interrupt())
goto scheduling_in_interrupt;
release_kernel_lock(prev, this_cpu);
/* Do "administrative" work here while we don't hold any locks */
if (bh_active & bh_mask)
do_bottom_half();
run_task_queue(&tq_scheduler);
spin_lock(&scheduler_lock);
spin_lock_irq(&runqueue_lock);
/* move an exhausted RR process to be last.. */
prev->need_resched = 0;
if (!prev->counter && prev->policy == SCHED_RR) {
prev->counter = prev->priority;
move_last_runqueue(prev);
}
switch (prev->state) {
case TASK_INTERRUPTIBLE:
if (signal_pending(prev)) {
prev->state = TASK_RUNNING;
break;
}
default:
del_from_runqueue(prev);
case TASK_RUNNING:
}
sched_data->prevstate = prev->state;
{
struct task_struct * p = init_task.next_run;
/*
* This is subtle.
* Note how we can enable interrupts here, even
* though interrupts can add processes to the run-
* queue. This is because any new processes will
* be added to the front of the queue, so "p" above
* is a safe starting point.
* run-queue deletion and re-ordering is protected by
* the scheduler lock
*/
spin_unlock_irq(&runqueue_lock);
#ifdef __SMP__
prev->has_cpu = 0;
#endif
/*
* Note! there may appear new tasks on the run-queue during this, as
* interrupts are enabled. However, they will be put on front of the
* list, so our list starting at "p" is essentially fixed.
*/
/* this is the scheduler proper: */
{
int c = -1000;
next = idle_task;
while (p != &init_task) {
if (can_schedule(p)) {
int weight = goodness(p, prev, this_cpu);
if (weight > c)
c = weight, next = p;
}
p = p->next_run;
}
/* Do we need to re-calculate counters? */
if (!c) {
struct task_struct *p;
read_lock(&tasklist_lock);
for_each_task(p)
p->counter = (p->counter >> 1) + p->priority;
read_unlock(&tasklist_lock);
}
}
}
/*
* maintain the per-process 'average timeslice' value.
* (this has to be recalculated even if we reschedule to
* the same process) Currently this is only used on SMP:
*/
#ifdef __SMP__
{
cycles_t t, this_slice;
t = get_cycles();
this_slice = t - sched_data->last_schedule;
sched_data->last_schedule = t;
/*
* Simple, exponentially fading average calculation:
*/
prev->avg_slice = this_slice + prev->avg_slice;
prev->avg_slice >>= 1;
}
/*
* We drop the scheduler lock early (it's a global spinlock),
* thus we have to lock the previous process from getting
* rescheduled during switch_to().
*/
prev->has_cpu = 1;
next->has_cpu = 1;
next->processor = this_cpu;
spin_unlock(&scheduler_lock);
#endif /* __SMP__ */
if (prev != next) {
#ifdef __SMP__
sched_data->prev = prev;
#endif
kstat.context_swtch++;
get_mmu_context(next);
switch_to(prev,next);
__schedule_tail();
}
reacquire_kernel_lock(current);
return;
scheduling_in_interrupt:
printk("Scheduling in interrupt\n");
*(int *)0 = 0;
}
rwlock_t waitqueue_lock = RW_LOCK_UNLOCKED;
/*
* wake_up doesn't wake up stopped processes - they have to be awakened
* with signals or similar.
*
* Note that we only need a read lock for the wait queue (and thus do not
* have to protect against interrupts), as the actual removal from the
* queue is handled by the process itself.
*/
void __wake_up(struct wait_queue **q, unsigned int mode)
{
struct wait_queue *next;
read_lock(&waitqueue_lock);
if (q && (next = *q)) {
struct wait_queue *head;
head = WAIT_QUEUE_HEAD(q);
while (next != head) {
struct task_struct *p = next->task;
next = next->next;
if (p->state & mode)
wake_up_process(p);
}
}
read_unlock(&waitqueue_lock);
}
/*
* Semaphores are implemented using a two-way counter:
* The "count" variable is decremented for each process
* that tries to sleep, while the "waking" variable is
* incremented when the "up()" code goes to wake up waiting
* processes.
*
* Notably, the inline "up()" and "down()" functions can
* efficiently test if they need to do any extra work (up
* needs to do something only if count was negative before
* the increment operation.
*
* waking_non_zero() (from asm/semaphore.h) must execute
* atomically.
*
* When __up() is called, the count was negative before
* incrementing it, and we need to wake up somebody.
*
* This routine adds one to the count of processes that need to
* wake up and exit. ALL waiting processes actually wake up but
* only the one that gets to the "waking" field first will gate
* through and acquire the semaphore. The others will go back
* to sleep.
*
* Note that these functions are only called when there is
* contention on the lock, and as such all this is the
* "non-critical" part of the whole semaphore business. The
* critical part is the inline stuff in <asm/semaphore.h>
* where we want to avoid any extra jumps and calls.
*/
void __up(struct semaphore *sem)
{
wake_one_more(sem);
wake_up(&sem->wait);
}
/*
* Perform the "down" function. Return zero for semaphore acquired,
* return negative for signalled out of the function.
*
* If called from __down, the return is ignored and the wait loop is
* not interruptible. This means that a task waiting on a semaphore
* using "down()" cannot be killed until someone does an "up()" on
* the semaphore.
*
* If called from __down_interruptible, the return value gets checked
* upon return. If the return value is negative then the task continues
* with the negative value in the return register (it can be tested by
* the caller).
*
* Either form may be used in conjunction with "up()".
*
*/
#define DOWN_VAR \
struct task_struct *tsk = current; \
struct wait_queue wait = { tsk, NULL };
#define DOWN_HEAD(task_state) \
\
\
tsk->state = (task_state); \
add_wait_queue(&sem->wait, &wait); \
\
/* \
* Ok, we're set up. sem->count is known to be less than zero \
* so we must wait. \
* \
* We can let go the lock for purposes of waiting. \
* We re-acquire it after awaking so as to protect \
* all semaphore operations. \
* \
* If "up()" is called before we call waking_non_zero() then \
* we will catch it right away. If it is called later then \
* we will have to go through a wakeup cycle to catch it. \
* \
* Multiple waiters contend for the semaphore lock to see \
* who gets to gate through and who has to wait some more. \
*/ \
for (;;) { \
if (waking_non_zero(sem, tsk)) /* are we waking up? */ \
break; /* yes, exit loop */
#define DOWN_TAIL(task_state) \
tsk->state = (task_state); \
} \
tsk->state = TASK_RUNNING; \
remove_wait_queue(&sem->wait, &wait);
void __down(struct semaphore * sem)
{
DOWN_VAR
DOWN_HEAD(TASK_UNINTERRUPTIBLE)
schedule();
DOWN_TAIL(TASK_UNINTERRUPTIBLE)
}
int __down_interruptible(struct semaphore * sem)
{
DOWN_VAR
int ret = 0;
DOWN_HEAD(TASK_INTERRUPTIBLE)
if (signal_pending(tsk))
{
ret = -EINTR; /* interrupted */
atomic_inc(&sem->count); /* give up on down operation */
break;
}
schedule();
DOWN_TAIL(TASK_INTERRUPTIBLE)
return ret;
}
#define SLEEP_ON_VAR \
unsigned long flags; \
struct wait_queue wait;
#define SLEEP_ON_HEAD \
wait.task = current; \
write_lock_irqsave(&waitqueue_lock, flags); \
__add_wait_queue(p, &wait); \
write_unlock(&waitqueue_lock);
#define SLEEP_ON_TAIL \
write_lock_irq(&waitqueue_lock); \
__remove_wait_queue(p, &wait); \
write_unlock_irqrestore(&waitqueue_lock, flags);
void interruptible_sleep_on(struct wait_queue **p)
{
SLEEP_ON_VAR
current->state = TASK_INTERRUPTIBLE;
SLEEP_ON_HEAD
schedule();
SLEEP_ON_TAIL
}
long interruptible_sleep_on_timeout(struct wait_queue **p, long timeout)
{
SLEEP_ON_VAR
current->state = TASK_INTERRUPTIBLE;
SLEEP_ON_HEAD
timeout = schedule_timeout(timeout);
SLEEP_ON_TAIL
return timeout;
}
void sleep_on(struct wait_queue **p)
{
SLEEP_ON_VAR
current->state = TASK_UNINTERRUPTIBLE;
SLEEP_ON_HEAD
schedule();
SLEEP_ON_TAIL
}
long sleep_on_timeout(struct wait_queue **p, long timeout)
{
SLEEP_ON_VAR
current->state = TASK_UNINTERRUPTIBLE;
SLEEP_ON_HEAD
timeout = schedule_timeout(timeout);
SLEEP_ON_TAIL
return timeout;
}
void scheduling_functions_end_here(void) { }
static inline void cascade_timers(struct timer_vec *tv)
{
/* cascade all the timers from tv up one level */
struct timer_list *timer;
timer = tv->vec[tv->index];
/*
* We are removing _all_ timers from the list, so we don't have to
* detach them individually, just clear the list afterwards.
*/
while (timer) {
struct timer_list *tmp = timer;
timer = timer->next;
internal_add_timer(tmp);
}
tv->vec[tv->index] = NULL;
tv->index = (tv->index + 1) & TVN_MASK;
}
static inline void run_timer_list(void)
{
spin_lock_irq(&timerlist_lock);
while ((long)(jiffies - timer_jiffies) >= 0) {
struct timer_list *timer;
if (!tv1.index) {
int n = 1;
do {
cascade_timers(tvecs[n]);
} while (tvecs[n]->index == 1 && ++n < NOOF_TVECS);
}
while ((timer = tv1.vec[tv1.index])) {
void (*fn)(unsigned long) = timer->function;
unsigned long data = timer->data;
detach_timer(timer);
timer->next = timer->prev = NULL;
spin_unlock_irq(&timerlist_lock);
fn(data);
spin_lock_irq(&timerlist_lock);
}
++timer_jiffies;
tv1.index = (tv1.index + 1) & TVR_MASK;
}
spin_unlock_irq(&timerlist_lock);
}
static inline void run_old_timers(void)
{
struct timer_struct *tp;
unsigned long mask;
for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {
if (mask > timer_active)
break;
if (!(mask & timer_active))
continue;
if (time_after(tp->expires, jiffies))
continue;
timer_active &= ~mask;
tp->fn();
sti();
}
}
spinlock_t tqueue_lock;
void tqueue_bh(void)
{
run_task_queue(&tq_timer);
}
void immediate_bh(void)
{
run_task_queue(&tq_immediate);
}
unsigned long timer_active = 0;
struct timer_struct timer_table[32];
/*
* Hmm.. Changed this, as the GNU make sources (load.c) seems to
* imply that avenrun[] is the standard name for this kind of thing.
* Nothing else seems to be standardized: the fractional size etc
* all seem to differ on different machines.
*/
unsigned long avenrun[3] = { 0,0,0 };
/*
* Nr of active tasks - counted in fixed-point numbers
*/
static unsigned long count_active_tasks(void)
{
struct task_struct *p;
unsigned long nr = 0;
read_lock(&tasklist_lock);
for_each_task(p) {
if ((p->state == TASK_RUNNING ||
p->state == TASK_UNINTERRUPTIBLE ||
p->state == TASK_SWAPPING))
nr += FIXED_1;
}
read_unlock(&tasklist_lock);
return nr;
}
static inline void calc_load(unsigned long ticks)
{
unsigned long active_tasks; /* fixed-point */
static int count = LOAD_FREQ;
count -= ticks;
if (count < 0) {
count += LOAD_FREQ;
active_tasks = count_active_tasks();
CALC_LOAD(avenrun[0], EXP_1, active_tasks);
CALC_LOAD(avenrun[1], EXP_5, active_tasks);
CALC_LOAD(avenrun[2], EXP_15, active_tasks);
}
}
/*
* this routine handles the overflow of the microsecond field
*
* The tricky bits of code to handle the accurate clock support
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
* They were originally developed for SUN and DEC kernels.
* All the kudos should go to Dave for this stuff.
*
*/
static void second_overflow(void)
{
long ltemp;
/* Bump the maxerror field */
time_maxerror += time_tolerance >> SHIFT_USEC;
if ( time_maxerror > NTP_PHASE_LIMIT ) {
time_maxerror = NTP_PHASE_LIMIT;
time_state = TIME_ERROR; /* p. 17, sect. 4.3, (b) */
time_status |= STA_UNSYNC;
}
/*
* Leap second processing. If in leap-insert state at
* the end of the day, the system clock is set back one
* second; if in leap-delete state, the system clock is
* set ahead one second. The microtime() routine or
* external clock driver will insure that reported time
* is always monotonic. The ugly divides should be
* replaced.
*/
switch (time_state) {
case TIME_OK:
if (time_status & STA_INS)
time_state = TIME_INS;
else if (time_status & STA_DEL)
time_state = TIME_DEL;
break;
case TIME_INS:
if (xtime.tv_sec % 86400 == 0) {
xtime.tv_sec--;
time_state = TIME_OOP;
printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n");
}
break;
case TIME_DEL:
if ((xtime.tv_sec + 1) % 86400 == 0) {
xtime.tv_sec++;
time_state = TIME_WAIT;
printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n");
}
break;
case TIME_OOP:
time_state = TIME_WAIT;
break;
case TIME_WAIT:
if (!(time_status & (STA_INS | STA_DEL)))
time_state = TIME_OK;
}
/*
* Compute the phase adjustment for the next second. In
* PLL mode, the offset is reduced by a fixed factor
* times the time constant. In FLL mode the offset is
* used directly. In either mode, the maximum phase
* adjustment for each second is clamped so as to spread
* the adjustment over not more than the number of
* seconds between updates.
*/
if (time_offset < 0) {
ltemp = -time_offset;
if (!(time_status & STA_FLL))
ltemp >>= SHIFT_KG + time_constant;
if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
time_offset += ltemp;
time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
} else {
ltemp = time_offset;
if (!(time_status & STA_FLL))
ltemp >>= SHIFT_KG + time_constant;
if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
time_offset -= ltemp;
time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
}
/*
* Compute the frequency estimate and additional phase
* adjustment due to frequency error for the next
* second. When the PPS signal is engaged, gnaw on the
* watchdog counter and update the frequency computed by
* the pll and the PPS signal.
*/
pps_valid++;
if (pps_valid == PPS_VALID) { /* PPS signal lost */
pps_jitter = MAXTIME;
pps_stabil = MAXFREQ;
time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
STA_PPSWANDER | STA_PPSERROR);
}
ltemp = time_freq + pps_freq;
if (ltemp < 0)
time_adj -= -ltemp >>
(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
else
time_adj += ltemp >>
(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
#if HZ == 100
/* Compensate for (HZ==100) != (1 << SHIFT_HZ).
* Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14)
*/
if (time_adj < 0)
time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
else
time_adj += (time_adj >> 2) + (time_adj >> 5);
#endif
}
/* in the NTP reference this is called "hardclock()" */
static void update_wall_time_one_tick(void)
{
if ( (time_adjust_step = time_adjust) != 0 ) {
/* We are doing an adjtime thing.
*
* Prepare time_adjust_step to be within bounds.
* Note that a positive time_adjust means we want the clock
* to run faster.
*
* Limit the amount of the step to be in the range
* -tickadj .. +tickadj
*/
if (time_adjust > tickadj)
time_adjust_step = tickadj;
else if (time_adjust < -tickadj)
time_adjust_step = -tickadj;
/* Reduce by this step the amount of time left */
time_adjust -= time_adjust_step;
}
xtime.tv_usec += tick + time_adjust_step;
/*
* Advance the phase, once it gets to one microsecond, then
* advance the tick more.
*/
time_phase += time_adj;
if (time_phase <= -FINEUSEC) {
long ltemp = -time_phase >> SHIFT_SCALE;
time_phase += ltemp << SHIFT_SCALE;
xtime.tv_usec -= ltemp;
}
else if (time_phase >= FINEUSEC) {
long ltemp = time_phase >> SHIFT_SCALE;
time_phase -= ltemp << SHIFT_SCALE;
xtime.tv_usec += ltemp;
}
}
/*
* Using a loop looks inefficient, but "ticks" is
* usually just one (we shouldn't be losing ticks,
* we're doing this this way mainly for interrupt
* latency reasons, not because we think we'll
* have lots of lost timer ticks
*/
static void update_wall_time(unsigned long ticks)
{
do {
ticks--;
update_wall_time_one_tick();
} while (ticks);
if (xtime.tv_usec >= 1000000) {
xtime.tv_usec -= 1000000;
xtime.tv_sec++;
second_overflow();
}
}
static inline void do_process_times(struct task_struct *p,
unsigned long user, unsigned long system)
{
long psecs;
psecs = (p->times.tms_utime += user);
psecs += (p->times.tms_stime += system);
if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_cur) {
/* Send SIGXCPU every second.. */
if (!(psecs % HZ))
send_sig(SIGXCPU, p, 1);
/* and SIGKILL when we go over max.. */
if (psecs / HZ > p->rlim[RLIMIT_CPU].rlim_max)
send_sig(SIGKILL, p, 1);
}
}
static inline void do_it_virt(struct task_struct * p, unsigned long ticks)
{
unsigned long it_virt = p->it_virt_value;
if (it_virt) {
if (it_virt <= ticks) {
it_virt = ticks + p->it_virt_incr;
send_sig(SIGVTALRM, p, 1);
}
p->it_virt_value = it_virt - ticks;
}
}
static inline void do_it_prof(struct task_struct * p, unsigned long ticks)
{
unsigned long it_prof = p->it_prof_value;
if (it_prof) {
if (it_prof <= ticks) {
it_prof = ticks + p->it_prof_incr;
send_sig(SIGPROF, p, 1);
}
p->it_prof_value = it_prof - ticks;
}
}
void update_one_process(struct task_struct *p,
unsigned long ticks, unsigned long user, unsigned long system, int cpu)
{
p->per_cpu_utime[cpu] += user;
p->per_cpu_stime[cpu] += system;
do_process_times(p, user, system);
do_it_virt(p, user);
do_it_prof(p, ticks);
}
static void update_process_times(unsigned long ticks, unsigned long system)
{
/*
* SMP does this on a per-CPU basis elsewhere
*/
#ifndef __SMP__
struct task_struct * p = current;
unsigned long user = ticks - system;
if (p->pid) {
p->counter -= ticks;
if (p->counter < 0) {
p->counter = 0;
p->need_resched = 1;
}
if (p->priority < DEF_PRIORITY)
kstat.cpu_nice += user;
else
kstat.cpu_user += user;
kstat.cpu_system += system;
}
update_one_process(p, ticks, user, system, 0);
#endif
}
volatile unsigned long lost_ticks = 0;
static unsigned long lost_ticks_system = 0;
/*
* This spinlock protect us from races in SMP while playing with xtime. -arca
*/
rwlock_t xtime_lock = RW_LOCK_UNLOCKED;
static inline void update_times(void)
{
unsigned long ticks;
/*
* update_times() is run from the raw timer_bh handler so we
* just know that the irqs are locally enabled and so we don't
* need to save/restore the flags of the local CPU here. -arca
*/
write_lock_irq(&xtime_lock);
ticks = lost_ticks;
lost_ticks = 0;
if (ticks) {
unsigned long system;
system = xchg(&lost_ticks_system, 0);
calc_load(ticks);
update_wall_time(ticks);
write_unlock_irq(&xtime_lock);
update_process_times(ticks, system);
} else
write_unlock_irq(&xtime_lock);
}
static void timer_bh(void)
{
update_times();
run_old_timers();
run_timer_list();
}
void do_timer(struct pt_regs * regs)
{
(*(unsigned long *)&jiffies)++;
lost_ticks++;
mark_bh(TIMER_BH);
if (!user_mode(regs))
lost_ticks_system++;
if (tq_timer)
mark_bh(TQUEUE_BH);
}
#ifndef __alpha__
/*
* For backwards compatibility? This can be done in libc so Alpha
* and all newer ports shouldn't need it.
*/
asmlinkage unsigned int sys_alarm(unsigned int seconds)
{
struct itimerval it_new, it_old;
unsigned int oldalarm;
it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
it_new.it_value.tv_sec = seconds;
it_new.it_value.tv_usec = 0;
do_setitimer(ITIMER_REAL, &it_new, &it_old);
oldalarm = it_old.it_value.tv_sec;
/* ehhh.. We can't return 0 if we have an alarm pending.. */
/* And we'd better return too much than too little anyway */
if (it_old.it_value.tv_usec)
oldalarm++;
return oldalarm;
}
/*
* The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
* should be moved into arch/i386 instead?
*/
asmlinkage int sys_getpid(void)
{
/* This is SMP safe - current->pid doesn't change */
return current->pid;
}
/*
* This is not strictly SMP safe: p_opptr could change
* from under us. However, rather than getting any lock
* we can use an optimistic algorithm: get the parent
* pid, and go back and check that the parent is still
* the same. If it has changed (which is extremely unlikely
* indeed), we just try again..
*
* NOTE! This depends on the fact that even if we _do_
* get an old value of "parent", we can happily dereference
* the pointer: we just can't necessarily trust the result
* until we know that the parent pointer is valid.
*
* The "mb()" macro is a memory barrier - a synchronizing
* event. It also makes sure that gcc doesn't optimize
* away the necessary memory references.. The barrier doesn't
* have to have all that strong semantics: on x86 we don't
* really require a synchronizing instruction, for example.
* The barrier is more important for code generation than
* for any real memory ordering semantics (even if there is
* a small window for a race, using the old pointer is
* harmless for a while).
*/
asmlinkage int sys_getppid(void)
{
int pid;
struct task_struct * me = current;
struct task_struct * parent;
parent = me->p_opptr;
for (;;) {
pid = parent->pid;
#if __SMP__
{
struct task_struct *old = parent;
mb();
parent = me->p_opptr;
if (old != parent)
continue;
}
#endif
break;
}
return pid;
}
asmlinkage int sys_getuid(void)
{
/* Only we change this so SMP safe */
return current->uid;
}
asmlinkage int sys_geteuid(void)
{
/* Only we change this so SMP safe */
return current->euid;
}
asmlinkage int sys_getgid(void)
{
/* Only we change this so SMP safe */
return current->gid;
}
asmlinkage int sys_getegid(void)
{
/* Only we change this so SMP safe */
return current->egid;
}
/*
* This has been replaced by sys_setpriority. Maybe it should be
* moved into the arch dependent tree for those ports that require
* it for backward compatibility?
*/
asmlinkage int sys_nice(int increment)
{
unsigned long newprio;
int increase = 0;
/*
* Setpriority might change our priority at the same moment.
* We don't have to worry. Conceptually one call occurs first
* and we have a single winner.
*/
newprio = increment;
if (increment < 0) {
if (!capable(CAP_SYS_NICE))
return -EPERM;
newprio = -increment;
increase = 1;
}
if (newprio > 40)
newprio = 40;
/*
* do a "normalization" of the priority (traditionally
* Unix nice values are -20 to 20; Linux doesn't really
* use that kind of thing, but uses the length of the
* timeslice instead (default 210 ms). The rounding is
* why we want to avoid negative values.
*/
newprio = (newprio * DEF_PRIORITY + 10) / 20;
increment = newprio;
if (increase)
increment = -increment;
/*
* Current->priority can change between this point
* and the assignment. We are assigning not doing add/subs
* so thats ok. Conceptually a process might just instantaneously
* read the value we stomp over. I don't think that is an issue
* unless posix makes it one. If so we can loop on changes
* to current->priority.
*/
newprio = current->priority - increment;
if ((signed) newprio < 1)
newprio = 1;
if (newprio > DEF_PRIORITY*2)
newprio = DEF_PRIORITY*2;
current->priority = newprio;
return 0;
}
#endif
static inline struct task_struct *find_process_by_pid(pid_t pid)
{
struct task_struct *tsk = current;
if (pid)
tsk = find_task_by_pid(pid);
return tsk;
}
static int setscheduler(pid_t pid, int policy,
struct sched_param *param)
{
struct sched_param lp;
struct task_struct *p;
int retval;
retval = -EINVAL;
if (!param || pid < 0)
goto out_nounlock;
retval = -EFAULT;
if (copy_from_user(&lp, param, sizeof(struct sched_param)))
goto out_nounlock;
/*
* We play safe to avoid deadlocks.
*/
spin_lock(&scheduler_lock);
spin_lock_irq(&runqueue_lock);
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock;
if (policy < 0)
policy = p->policy;
else {
retval = -EINVAL;
if (policy != SCHED_FIFO && policy != SCHED_RR &&
policy != SCHED_OTHER)
goto out_unlock;
}
/*
* Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
* priority for SCHED_OTHER is 0.
*/
retval = -EINVAL;
if (lp.sched_priority < 0 || lp.sched_priority > 99)
goto out_unlock;
if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
goto out_unlock;
retval = -EPERM;
if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
if ((current->euid != p->euid) && (current->euid != p->uid) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
retval = 0;
p->policy = policy;
p->rt_priority = lp.sched_priority;
if (p->next_run)
move_first_runqueue(p);
current->need_resched = 1;
out_unlock:
read_unlock(&tasklist_lock);
spin_unlock_irq(&runqueue_lock);
spin_unlock(&scheduler_lock);
out_nounlock:
return retval;
}
asmlinkage int sys_sched_setscheduler(pid_t pid, int policy,
struct sched_param *param)
{
return setscheduler(pid, policy, param);
}
asmlinkage int sys_sched_setparam(pid_t pid, struct sched_param *param)
{
return setscheduler(pid, -1, param);
}
asmlinkage int sys_sched_getscheduler(pid_t pid)
{
struct task_struct *p;
int retval;
retval = -EINVAL;
if (pid < 0)
goto out_nounlock;
read_lock(&tasklist_lock);
retval = -ESRCH;
p = find_process_by_pid(pid);
if (!p)
goto out_unlock;
retval = p->policy;
out_unlock:
read_unlock(&tasklist_lock);
out_nounlock:
return retval;
}
asmlinkage int sys_sched_getparam(pid_t pid, struct sched_param *param)
{
struct task_struct *p;
struct sched_param lp;
int retval;
retval = -EINVAL;
if (!param || pid < 0)
goto out_nounlock;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock;
lp.sched_priority = p->rt_priority;
read_unlock(&tasklist_lock);
/*
* This one might sleep, we cannot do it with a spinlock held ...
*/
retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
out_nounlock:
return retval;
out_unlock:
read_unlock(&tasklist_lock);
return retval;
}
asmlinkage int sys_sched_yield(void)
{
spin_lock(&scheduler_lock);
spin_lock_irq(&runqueue_lock);
if (current->policy == SCHED_OTHER)
current->policy |= SCHED_YIELD;
current->need_resched = 1;
move_last_runqueue(current);
spin_unlock_irq(&runqueue_lock);
spin_unlock(&scheduler_lock);
return 0;
}
asmlinkage int sys_sched_get_priority_max(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = 99;
break;
case SCHED_OTHER:
ret = 0;
break;
}
return ret;
}
asmlinkage int sys_sched_get_priority_min(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = 1;
break;
case SCHED_OTHER:
ret = 0;
}
return ret;
}
asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
{
struct timespec t;
t.tv_sec = 0;
t.tv_nsec = 150000;
if (copy_to_user(interval, &t, sizeof(struct timespec)))
return -EFAULT;
return 0;
}
asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
{
struct timespec t;
unsigned long expire;
if(copy_from_user(&t, rqtp, sizeof(struct timespec)))
return -EFAULT;
if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0)
return -EINVAL;
if (t.tv_sec == 0 && t.tv_nsec <= 2000000L &&
current->policy != SCHED_OTHER)
{
/*
* Short delay requests up to 2 ms will be handled with
* high precision by a busy wait for all real-time processes.
*
* Its important on SMP not to do this holding locks.
*/
udelay((t.tv_nsec + 999) / 1000);
return 0;
}
expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
current->state = TASK_INTERRUPTIBLE;
expire = schedule_timeout(expire);
if (expire) {
if (rmtp) {
jiffies_to_timespec(expire, &t);
if (copy_to_user(rmtp, &t, sizeof(struct timespec)))
return -EFAULT;
}
return -EINTR;
}
return 0;
}
static void show_task(int nr,struct task_struct * p)
{
unsigned long free = 0;
int state;
static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr);
state = p->state ? ffz(~p->state) + 1 : 0;
if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
printk(stat_nam[state]);
else
printk(" ");
#if (BITS_PER_LONG == 32)
if (p == current)
printk(" current ");
else
printk(" %08lX ", thread_saved_pc(&p->tss));
#else
if (p == current)
printk(" current task ");
else
printk(" %016lx ", thread_saved_pc(&p->tss));
#endif
{
unsigned long * n = (unsigned long *) (p+1);
while (!*n)
n++;
free = (unsigned long) n - (unsigned long)(p+1);
}
printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid);
if (p->p_cptr)
printk("%5d ", p->p_cptr->pid);
else
printk(" ");
if (p->p_ysptr)
printk("%7d", p->p_ysptr->pid);
else
printk(" ");
if (p->p_osptr)
printk(" %5d\n", p->p_osptr->pid);
else
printk("\n");
{
struct signal_queue *q;
char s[sizeof(sigset_t)*2+1], b[sizeof(sigset_t)*2+1];
render_sigset_t(&p->signal, s);
render_sigset_t(&p->blocked, b);
printk(" sig: %d %s %s :", signal_pending(p), s, b);
for (q = p->sigqueue; q ; q = q->next)
printk(" %d", q->info.si_signo);
printk(" X\n");
}
}
char * render_sigset_t(sigset_t *set, char *buffer)
{
int i = _NSIG, x;
do {
i -= 4, x = 0;
if (sigismember(set, i+1)) x |= 1;
if (sigismember(set, i+2)) x |= 2;
if (sigismember(set, i+3)) x |= 4;
if (sigismember(set, i+4)) x |= 8;
*buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
} while (i >= 4);
*buffer = 0;
return buffer;
}
void show_state(void)
{
struct task_struct *p;
#if (BITS_PER_LONG == 32)
printk("\n"
" free sibling\n");
printk(" task PC stack pid father child younger older\n");
#else
printk("\n"
" free sibling\n");
printk(" task PC stack pid father child younger older\n");
#endif
read_lock(&tasklist_lock);
for_each_task(p)
show_task((p->tarray_ptr - &task[0]),p);
read_unlock(&tasklist_lock);
}
void __init sched_init(void)
{
/*
* We have to do a little magic to get the first
* process right in SMP mode.
*/
int cpu=hard_smp_processor_id();
int nr = NR_TASKS;
init_task.processor=cpu;
/* Init task array free list and pidhash table. */
while(--nr > 0)
add_free_taskslot(&task[nr]);
for(nr = 0; nr < PIDHASH_SZ; nr++)
pidhash[nr] = NULL;
init_bh(TIMER_BH, timer_bh);
init_bh(TQUEUE_BH, tqueue_bh);
init_bh(IMMEDIATE_BH, immediate_bh);
}
|