1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
/*
* linux/kernel/time.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* This file contains the interface functions for the various
* time related system calls: time, stime, gettimeofday, settimeofday,
* adjtime
*/
/*
* Modification history kernel/time.c
*
* 1993-09-02 Philip Gladstone
* Created file with time related functions from sched.c and adjtimex()
* 1993-10-08 Torsten Duwe
* adjtime interface update and CMOS clock write code
* 1995-08-13 Torsten Duwe
* kernel PLL updated to 1994-12-13 specs (rfc-1489)
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/timex.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <asm/uaccess.h>
/*
* The timezone where the local system is located. Used as a default by some
* programs who obtain this value by using gettimeofday.
*/
struct timezone sys_tz = { 0, 0};
static void do_normal_gettime(struct timeval * tm)
{
*tm=xtime;
}
void (*do_get_fast_time)(struct timeval *) = do_normal_gettime;
/*
* Generic way to access 'xtime' (the current time of day).
* This can be changed if the platform provides a more accurate (and fast!)
* version.
*/
void get_fast_time(struct timeval * t)
{
do_get_fast_time(t);
}
#ifndef __alpha__
/*
* sys_time() can be implemented in user-level using
* sys_gettimeofday(). Is this for backwards compatibility? If so,
* why not move it into the appropriate arch directory (for those
* architectures that need it).
*/
asmlinkage int sys_time(int * tloc)
{
int i;
/* SMP: This is fairly trivial. We grab CURRENT_TIME and
stuff it to user space. No side effects */
i = CURRENT_TIME;
if (tloc) {
if (put_user(i,tloc))
i = -EFAULT;
}
return i;
}
/*
* sys_stime() can be implemented in user-level using
* sys_settimeofday(). Is this for backwards compatibility? If so,
* why not move it into the appropriate arch directory (for those
* architectures that need it).
*/
asmlinkage int sys_stime(int * tptr)
{
int value;
if (!suser())
return -EPERM;
if (get_user(value, tptr))
return -EFAULT;
cli();
xtime.tv_sec = value;
xtime.tv_usec = 0;
time_state = TIME_ERROR;
time_maxerror = MAXPHASE;
time_esterror = MAXPHASE;
sti();
return 0;
}
#endif
asmlinkage int sys_gettimeofday(struct timeval *tv, struct timezone *tz)
{
if (tv) {
struct timeval ktv;
do_gettimeofday(&ktv);
if (copy_to_user(tv, &ktv, sizeof(ktv)))
return -EFAULT;
}
if (tz) {
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
return -EFAULT;
}
return 0;
}
/*
* Adjust the time obtained from the CMOS to be UTC time instead of
* local time.
*
* This is ugly, but preferable to the alternatives. Otherwise we
* would either need to write a program to do it in /etc/rc (and risk
* confusion if the program gets run more than once; it would also be
* hard to make the program warp the clock precisely n hours) or
* compile in the timezone information into the kernel. Bad, bad....
*
* - TYT, 1992-01-01
*
* The best thing to do is to keep the CMOS clock in universal time (UTC)
* as real UNIX machines always do it. This avoids all headaches about
* daylight saving times and warping kernel clocks.
*/
inline static void warp_clock(void)
{
cli();
xtime.tv_sec += sys_tz.tz_minuteswest * 60;
sti();
}
/*
* In case for some reason the CMOS clock has not already been running
* in UTC, but in some local time: The first time we set the timezone,
* we will warp the clock so that it is ticking UTC time instead of
* local time. Presumably, if someone is setting the timezone then we
* are running in an environment where the programs understand about
* timezones. This should be done at boot time in the /etc/rc script,
* as soon as possible, so that the clock can be set right. Otherwise,
* various programs will get confused when the clock gets warped.
*/
asmlinkage int sys_settimeofday(struct timeval *tv, struct timezone *tz)
{
static int firsttime = 1;
struct timeval new_tv;
struct timezone new_tz;
if (!suser())
return -EPERM;
if (tv) {
if (copy_from_user(&new_tv, tv, sizeof(*tv)))
return -EFAULT;
}
if (tz) {
if (copy_from_user(&new_tz, tz, sizeof(*tz)))
return -EFAULT;
/* SMP safe, global irq locking makes it work. */
sys_tz = new_tz;
if (firsttime) {
firsttime = 0;
if (!tv)
warp_clock();
}
}
if (tv)
{
/* SMP safe, again the code in arch/foo/time.c should
* globally block out interrupts when it runs.
*/
do_settimeofday(&new_tv);
}
return 0;
}
long pps_offset = 0; /* pps time offset (us) */
long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
long pps_freq = 0; /* frequency offset (scaled ppm) */
long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
long pps_valid = PPS_VALID; /* pps signal watchdog counter */
int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
long pps_jitcnt = 0; /* jitter limit exceeded */
long pps_calcnt = 0; /* calibration intervals */
long pps_errcnt = 0; /* calibration errors */
long pps_stbcnt = 0; /* stability limit exceeded */
/* hook for a loadable hardpps kernel module */
void (*hardpps_ptr)(struct timeval *) = (void (*)(struct timeval *))0;
/* adjtimex mainly allows reading (and writing, if superuser) of
* kernel time-keeping variables. used by xntpd.
*/
asmlinkage int sys_adjtimex(struct timex *txc_p)
{
long ltemp, mtemp, save_adjust;
struct timex txc; /* Local copy of parameter */
/* Copy the user data space into the kernel copy
* structure. But bear in mind that the structures
* may change
*/
if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
return -EFAULT;
/* In order to modify anything, you gotta be super-user! */
if (txc.modes && !suser())
return -EPERM;
/* Now we validate the data before disabling interrupts */
if (txc.modes != ADJ_OFFSET_SINGLESHOT && (txc.modes & ADJ_OFFSET))
/* adjustment Offset limited to +- .512 seconds */
if (txc.offset <= - MAXPHASE || txc.offset >= MAXPHASE )
return -EINVAL;
/* if the quartz is off by more than 10% something is VERY wrong ! */
if (txc.modes & ADJ_TICK)
if (txc.tick < 900000/HZ || txc.tick > 1100000/HZ)
return -EINVAL;
cli(); /* SMP: global cli() is enough protection. */
/* Save for later - semantics of adjtime is to return old value */
save_adjust = time_adjust;
/* If there are input parameters, then process them */
if (txc.modes)
{
if (time_state == TIME_BAD)
time_state = TIME_OK;
if (txc.modes & ADJ_STATUS)
time_status = txc.status;
if (txc.modes & ADJ_FREQUENCY)
time_freq = txc.freq;
if (txc.modes & ADJ_MAXERROR)
time_maxerror = txc.maxerror;
if (txc.modes & ADJ_ESTERROR)
time_esterror = txc.esterror;
if (txc.modes & ADJ_TIMECONST)
time_constant = txc.constant;
if (txc.modes & ADJ_OFFSET)
if ((txc.modes == ADJ_OFFSET_SINGLESHOT)
|| !(time_status & STA_PLL))
{
time_adjust = txc.offset;
}
else if ((time_status & STA_PLL)||(time_status & STA_PPSTIME))
{
ltemp = (time_status & STA_PPSTIME &&
time_status & STA_PPSSIGNAL) ?
pps_offset : txc.offset;
/*
* Scale the phase adjustment and
* clamp to the operating range.
*/
if (ltemp > MAXPHASE)
time_offset = MAXPHASE << SHIFT_UPDATE;
else if (ltemp < -MAXPHASE)
time_offset = -(MAXPHASE << SHIFT_UPDATE);
else
time_offset = ltemp << SHIFT_UPDATE;
/*
* Select whether the frequency is to be controlled and in which
* mode (PLL or FLL). Clamp to the operating range. Ugly
* multiply/divide should be replaced someday.
*/
if (time_status & STA_FREQHOLD || time_reftime == 0)
time_reftime = xtime.tv_sec;
mtemp = xtime.tv_sec - time_reftime;
time_reftime = xtime.tv_sec;
if (time_status & STA_FLL)
{
if (mtemp >= MINSEC)
{
ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
SHIFT_UPDATE));
if (ltemp < 0)
time_freq -= -ltemp >> SHIFT_KH;
else
time_freq += ltemp >> SHIFT_KH;
}
}
else
{
if (mtemp < MAXSEC)
{
ltemp *= mtemp;
if (ltemp < 0)
time_freq -= -ltemp >> (time_constant +
time_constant + SHIFT_KF -
SHIFT_USEC);
else
time_freq += ltemp >> (time_constant +
time_constant + SHIFT_KF -
SHIFT_USEC);
}
}
if (time_freq > time_tolerance)
time_freq = time_tolerance;
else if (time_freq < -time_tolerance)
time_freq = -time_tolerance;
} /* STA_PLL || STA_PPSTIME */
if (txc.modes & ADJ_TICK)
tick = txc.tick;
}
txc.offset = save_adjust;
txc.freq = time_freq;
txc.maxerror = time_maxerror;
txc.esterror = time_esterror;
txc.status = time_status;
txc.constant = time_constant;
txc.precision = time_precision;
txc.tolerance = time_tolerance;
txc.time = xtime;
txc.tick = tick;
txc.ppsfreq = pps_freq;
txc.jitter = pps_jitter;
txc.shift = pps_shift;
txc.stabil = pps_stabil;
txc.jitcnt = pps_jitcnt;
txc.calcnt = pps_calcnt;
txc.errcnt = pps_errcnt;
txc.stbcnt = pps_stbcnt;
sti();
return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : time_state;
}
|