summaryrefslogtreecommitdiffstats
path: root/mm/filemap.c
blob: b597bdde74b1e763d16fb9f4e2ff8ab9ef07aa05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994, 1995  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem does this differently, for example)
 */
#include <linux/stat.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/errno.h>
#include <linux/mman.h>
#include <linux/string.h>
#include <linux/malloc.h>
#include <linux/fs.h>
#include <linux/locks.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/blkdev.h>

#include <asm/system.h>
#include <asm/pgtable.h>
#include <asm/uaccess.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 */

unsigned long page_cache_size = 0;
struct page * page_hash_table[PAGE_HASH_SIZE];

/*
 * Simple routines for both non-shared and shared mappings.
 */

#define release_page(page) __free_page((page))

/*
 * Invalidate the pages of an inode, removing all pages that aren't
 * locked down (those are sure to be up-to-date anyway, so we shouldn't
 * invalidate them).
 */
void invalidate_inode_pages(struct inode * inode)
{
	struct page ** p;
	struct page * page;

	p = &inode->i_pages;
	while ((page = *p) != NULL) {
		if (PageLocked(page)) {
			p = &page->next;
			continue;
		}
		inode->i_nrpages--;
		if ((*p = page->next) != NULL)
			(*p)->prev = page->prev;
		page->next = NULL;
		page->prev = NULL;
		remove_page_from_hash_queue(page);
		page->inode = NULL;
		__free_page(page);
		continue;
	}
}

/*
 * Truncate the page cache at a set offset, removing the pages
 * that are beyond that offset (and zeroing out partial pages).
 */
void truncate_inode_pages(struct inode * inode, unsigned long start)
{
	struct page ** p;
	struct page * page;

repeat:
	p = &inode->i_pages;
	while ((page = *p) != NULL) {
		unsigned long offset = page->offset;

		/* page wholly truncated - free it */
		if (offset >= start) {
			if (PageLocked(page)) {
				wait_on_page(page);
				goto repeat;
			}
			inode->i_nrpages--;
			if ((*p = page->next) != NULL)
				(*p)->prev = page->prev;
			page->next = NULL;
			page->prev = NULL;
			remove_page_from_hash_queue(page);
			page->inode = NULL;
			__free_page(page);
			continue;
		}
		p = &page->next;
		offset = start - offset;
		/* partial truncate, clear end of page */
		if (offset < PAGE_SIZE) {
			unsigned long address = page_address(page);
			memset((void *) (offset + address), 0, PAGE_SIZE - offset);
			flush_page_to_ram(address);
		}
	}
}

int shrink_mmap(int priority, int dma)
{
	static unsigned long clock = 0;
	struct page * page;
	unsigned long limit = num_physpages;
	struct buffer_head *tmp, *bh;
	int count_max, count_min;

	count_max = (limit<<1) >> (priority>>1);
	count_min = (limit<<1) >> (priority);

	page = mem_map + clock;
	do {
		count_max--;
		if (page->inode || page->buffers)
			count_min--;

		if (PageLocked(page))
			goto next;
		if (dma && !PageDMA(page))
			goto next;
		/* First of all, regenerate the page's referenced bit
                   from any buffers in the page */
		bh = page->buffers;
		if (bh) {
			tmp = bh;
			do {
				if (buffer_touched(tmp)) {
					clear_bit(BH_Touched, &tmp->b_state);
					set_bit(PG_referenced, &page->flags);
				}
				tmp = tmp->b_this_page;
			} while (tmp != bh);
		}

		/* We can't throw away shared pages, but we do mark
		   them as referenced.  This relies on the fact that
		   no page is currently in both the page cache and the
		   buffer cache; we'd have to modify the following
		   test to allow for that case. */

		switch (atomic_read(&page->count)) {
			case 1:
				/* If it has been referenced recently, don't free it */
				if (test_and_clear_bit(PG_referenced, &page->flags))
					break;

				/* is it a page cache page? */
				if (page->inode) {
					remove_page_from_hash_queue(page);
					remove_page_from_inode_queue(page);
					__free_page(page);
					return 1;
				}

				/* is it a buffer cache page? */
				if (bh && try_to_free_buffer(bh, &bh, 6))
					return 1;
				break;

			default:
				/* more than one users: we can't throw it away */
				set_bit(PG_referenced, &page->flags);
				/* fall through */
			case 0:
				/* nothing */
		}
next:
		page++;
		clock++;
		if (clock >= limit) {
			clock = 0;
			page = mem_map;
		}
	} while (count_max > 0 && count_min > 0);
	return 0;
}

/*
 * This is called from try_to_swap_out() when we try to get rid of some
 * pages..  If we're unmapping the last occurrence of this page, we also
 * free it from the page hash-queues etc, as we don't want to keep it
 * in-core unnecessarily.
 */
unsigned long page_unuse(unsigned long page)
{
	struct page * p = mem_map + MAP_NR(page);
	int count = atomic_read(&p->count);

	if (count != 2)
		return count;
	if (!p->inode)
		return count;
	remove_page_from_hash_queue(p);
	remove_page_from_inode_queue(p);
	free_page(page);
	return 1;
}

/*
 * Update a page cache copy, when we're doing a "write()" system call
 * See also "update_vm_cache()".
 */
void update_vm_cache(struct inode * inode, unsigned long pos, const char * buf, int count)
{
	unsigned long offset, len;

	offset = (pos & ~PAGE_MASK);
	pos = pos & PAGE_MASK;
	len = PAGE_SIZE - offset;
	do {
		struct page * page;

		if (len > count)
			len = count;
		page = find_page(inode, pos);
		if (page) {
			wait_on_page(page);
			memcpy((void *) (offset + page_address(page)), buf, len);
			release_page(page);
		}
		count -= len;
		buf += len;
		len = PAGE_SIZE;
		offset = 0;
		pos += PAGE_SIZE;
	} while (count);
}

static inline void add_to_page_cache(struct page * page,
	struct inode * inode, unsigned long offset,
	struct page **hash)
{
	atomic_inc(&page->count);
	page->flags &= ~((1 << PG_uptodate) | (1 << PG_error));
	page->offset = offset;
	add_page_to_inode_queue(inode, page);
	__add_page_to_hash_queue(page, hash);
}

/*
 * Try to read ahead in the file. "page_cache" is a potentially free page
 * that we could use for the cache (if it is 0 we can try to create one,
 * this is all overlapped with the IO on the previous page finishing anyway)
 */
static unsigned long try_to_read_ahead(struct inode * inode, unsigned long offset, unsigned long page_cache)
{
	struct page * page;
	struct page ** hash;

	offset &= PAGE_MASK;
	switch (page_cache) {
	case 0:
		page_cache = __get_free_page(GFP_KERNEL);
		if (!page_cache)
			break;
	default:
		if (offset >= inode->i_size)
			break;
		hash = page_hash(inode, offset);
		page = __find_page(inode, offset, *hash);
		if (!page) {
			/*
			 * Ok, add the new page to the hash-queues...
			 */
			page = mem_map + MAP_NR(page_cache);
			add_to_page_cache(page, inode, offset, hash);
			inode->i_op->readpage(inode, page);
			page_cache = 0;
		}
		release_page(page);
	}
	return page_cache;
}

/* 
 * Wait for IO to complete on a locked page.
 *
 * This must be called with the caller "holding" the page,
 * ie with increased "page->count" so that the page won't
 * go away during the wait..
 */
void __wait_on_page(struct page *page)
{
	struct wait_queue wait = { current, NULL };

	add_wait_queue(&page->wait, &wait);
repeat:
	run_task_queue(&tq_disk);
	current->state = TASK_UNINTERRUPTIBLE;
	if (PageLocked(page)) {
		schedule();
		goto repeat;
	}
	remove_wait_queue(&page->wait, &wait);
	current->state = TASK_RUNNING;
}

#if 0
#define PROFILE_READAHEAD
#define DEBUG_READAHEAD
#endif

/*
 * Read-ahead profiling information
 * --------------------------------
 * Every PROFILE_MAXREADCOUNT, the following information is written 
 * to the syslog:
 *   Percentage of asynchronous read-ahead.
 *   Average of read-ahead fields context value.
 * If DEBUG_READAHEAD is defined, a snapshot of these fields is written 
 * to the syslog.
 */

#ifdef PROFILE_READAHEAD

#define PROFILE_MAXREADCOUNT 1000

static unsigned long total_reada;
static unsigned long total_async;
static unsigned long total_ramax;
static unsigned long total_ralen;
static unsigned long total_rawin;

static void profile_readahead(int async, struct file *filp)
{
	unsigned long flags;

	++total_reada;
	if (async)
		++total_async;

	total_ramax	+= filp->f_ramax;
	total_ralen	+= filp->f_ralen;
	total_rawin	+= filp->f_rawin;

	if (total_reada > PROFILE_MAXREADCOUNT) {
		save_flags(flags);
		cli();
		if (!(total_reada > PROFILE_MAXREADCOUNT)) {
			restore_flags(flags);
			return;
		}

		printk("Readahead average:  max=%ld, len=%ld, win=%ld, async=%ld%%\n",
			total_ramax/total_reada,
			total_ralen/total_reada,
			total_rawin/total_reada,
			(total_async*100)/total_reada);
#ifdef DEBUG_READAHEAD
		printk("Readahead snapshot: max=%ld, len=%ld, win=%ld, raend=%ld\n",
			filp->f_ramax, filp->f_ralen, filp->f_rawin, filp->f_raend);
#endif

		total_reada	= 0;
		total_async	= 0;
		total_ramax	= 0;
		total_ralen	= 0;
		total_rawin	= 0;

		restore_flags(flags);
	}
}
#endif  /* defined PROFILE_READAHEAD */

/*
 * Read-ahead context:
 * -------------------
 * The read ahead context fields of the "struct file" are the following:
 * - f_raend : position of the first byte after the last page we tried to
 *             read ahead.
 * - f_ramax : current read-ahead maximum size.
 * - f_ralen : length of the current IO read block we tried to read-ahead.
 * - f_rawin : length of the current read-ahead window.
 *             if last read-ahead was synchronous then
 *                  f_rawin = f_ralen
 *             otherwise (was asynchronous)
 *                  f_rawin = previous value of f_ralen + f_ralen
 *
 * Read-ahead limits:
 * ------------------
 * MIN_READAHEAD   : minimum read-ahead size when read-ahead.
 * MAX_READAHEAD   : maximum read-ahead size when read-ahead.
 *
 * Synchronous read-ahead benefits:
 * --------------------------------
 * Using reasonable IO xfer length from peripheral devices increase system 
 * performances.
 * Reasonable means, in this context, not too large but not too small.
 * The actual maximum value is:
 *	MAX_READAHEAD + PAGE_SIZE = 76k is CONFIG_READA_SMALL is undefined
 *      and 32K if defined (4K page size assumed).
 *
 * Asynchronous read-ahead benefits:
 * ---------------------------------
 * Overlapping next read request and user process execution increase system 
 * performance.
 *
 * Read-ahead risks:
 * -----------------
 * We have to guess which further data are needed by the user process.
 * If these data are often not really needed, it's bad for system 
 * performances.
 * However, we know that files are often accessed sequentially by 
 * application programs and it seems that it is possible to have some good 
 * strategy in that guessing.
 * We only try to read-ahead files that seems to be read sequentially.
 *
 * Asynchronous read-ahead risks:
 * ------------------------------
 * In order to maximize overlapping, we must start some asynchronous read 
 * request from the device, as soon as possible.
 * We must be very careful about:
 * - The number of effective pending IO read requests.
 *   ONE seems to be the only reasonable value.
 * - The total memory pool usage for the file access stream.
 *   This maximum memory usage is implicitly 2 IO read chunks:
 *   2*(MAX_READAHEAD + PAGE_SIZE) = 156K if CONFIG_READA_SMALL is undefined,
 *   64k if defined (4K page size assumed).
 */

#define PageAlignSize(size) (((size) + PAGE_SIZE -1) & PAGE_MASK)

#if 0  /* small readahead */
#define MAX_READAHEAD PageAlignSize(4096*7)
#define MIN_READAHEAD PageAlignSize(4096*2)
#else /* large readahead */
#define MAX_READAHEAD PageAlignSize(4096*18)
#define MIN_READAHEAD PageAlignSize(4096*3)
#endif

static inline int get_max_readahead(struct inode * inode)
{
	if (!inode->i_dev || !max_readahead[MAJOR(inode->i_dev)])
		return MAX_READAHEAD;
	return max_readahead[MAJOR(inode->i_dev)][MINOR(inode->i_dev)];
}

static inline unsigned long generic_file_readahead(int reada_ok, struct file * filp, struct inode * inode,
	unsigned long ppos, struct page * page,
	unsigned long page_cache)
{
	unsigned long max_ahead, ahead;
	unsigned long raend;
	int max_readahead = get_max_readahead(inode);

	raend = filp->f_raend & PAGE_MASK;
	max_ahead = 0;

/*
 * The current page is locked.
 * If the current position is inside the previous read IO request, do not
 * try to reread previously read ahead pages.
 * Otherwise decide or not to read ahead some pages synchronously.
 * If we are not going to read ahead, set the read ahead context for this 
 * page only.
 */
	if (PageLocked(page)) {
		if (!filp->f_ralen || ppos >= raend || ppos + filp->f_ralen < raend) {
			raend = ppos;
			if (raend < inode->i_size)
				max_ahead = filp->f_ramax;
			filp->f_rawin = 0;
			filp->f_ralen = PAGE_SIZE;
			if (!max_ahead) {
				filp->f_raend  = ppos + filp->f_ralen;
				filp->f_rawin += filp->f_ralen;
			}
		}
	}
/*
 * The current page is not locked.
 * If we were reading ahead and,
 * if the current max read ahead size is not zero and,
 * if the current position is inside the last read-ahead IO request,
 *   it is the moment to try to read ahead asynchronously.
 * We will later force unplug device in order to force asynchronous read IO.
 */
	else if (reada_ok && filp->f_ramax && raend >= PAGE_SIZE &&
	         ppos <= raend && ppos + filp->f_ralen >= raend) {
/*
 * Add ONE page to max_ahead in order to try to have about the same IO max size
 * as synchronous read-ahead (MAX_READAHEAD + 1)*PAGE_SIZE.
 * Compute the position of the last page we have tried to read in order to 
 * begin to read ahead just at the next page.
 */
		raend -= PAGE_SIZE;
		if (raend < inode->i_size)
			max_ahead = filp->f_ramax + PAGE_SIZE;

		if (max_ahead) {
			filp->f_rawin = filp->f_ralen;
			filp->f_ralen = 0;
			reada_ok      = 2;
		}
	}
/*
 * Try to read ahead pages.
 * We hope that ll_rw_blk() plug/unplug, coalescence, requests sort and the
 * scheduler, will work enough for us to avoid too bad actuals IO requests.
 */
	ahead = 0;
	while (ahead < max_ahead) {
		ahead += PAGE_SIZE;
		page_cache = try_to_read_ahead(inode, raend + ahead, page_cache);
	}
/*
 * If we tried to read ahead some pages,
 * If we tried to read ahead asynchronously,
 *   Try to force unplug of the device in order to start an asynchronous
 *   read IO request.
 * Update the read-ahead context.
 * Store the length of the current read-ahead window.
 * Double the current max read ahead size.
 *   That heuristic avoid to do some large IO for files that are not really
 *   accessed sequentially.
 */
	if (ahead) {
		if (reada_ok == 2) {
			run_task_queue(&tq_disk);
		}

		filp->f_ralen += ahead;
		filp->f_rawin += filp->f_ralen;
		filp->f_raend = raend + ahead + PAGE_SIZE;

		filp->f_ramax += filp->f_ramax;

		if (filp->f_ramax > max_readahead)
			filp->f_ramax = max_readahead;

#ifdef PROFILE_READAHEAD
		profile_readahead((reada_ok == 2), filp);
#endif
	}

	return page_cache;
}


/*
 * This is a generic file read routine, and uses the
 * inode->i_op->readpage() function for the actual low-level
 * stuff.
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
 */

ssize_t generic_file_read(struct file * filp, char * buf,
			  size_t count, loff_t *ppos)
{
	struct inode *inode = filp->f_dentry->d_inode;
	ssize_t error, read;
	size_t pos, pgpos, page_cache;
	int reada_ok;
	int max_readahead = get_max_readahead(inode);

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;
	if (!count)
		return 0;
	error = 0;
	read = 0;
	page_cache = 0;

	pos = *ppos;
	pgpos = pos & PAGE_MASK;
/*
 * If the current position is outside the previous read-ahead window, 
 * we reset the current read-ahead context and set read ahead max to zero
 * (will be set to just needed value later),
 * otherwise, we assume that the file accesses are sequential enough to
 * continue read-ahead.
 */
	if (pgpos > filp->f_raend || pgpos + filp->f_rawin < filp->f_raend) {
		reada_ok = 0;
		filp->f_raend = 0;
		filp->f_ralen = 0;
		filp->f_ramax = 0;
		filp->f_rawin = 0;
	} else {
		reada_ok = 1;
	}
/*
 * Adjust the current value of read-ahead max.
 * If the read operation stay in the first half page, force no readahead.
 * Otherwise try to increase read ahead max just enough to do the read request.
 * Then, at least MIN_READAHEAD if read ahead is ok,
 * and at most MAX_READAHEAD in all cases.
 */
	if (pos + count <= (PAGE_SIZE >> 1)) {
		filp->f_ramax = 0;
	} else {
		unsigned long needed;

		needed = ((pos + count) & PAGE_MASK) - pgpos;

		if (filp->f_ramax < needed)
			filp->f_ramax = needed;

		if (reada_ok && filp->f_ramax < MIN_READAHEAD)
				filp->f_ramax = MIN_READAHEAD;
		if (filp->f_ramax > max_readahead)
			filp->f_ramax = max_readahead;
	}

	for (;;) {
		struct page *page, **hash;

		if (pos >= inode->i_size)
			break;

		/*
		 * Try to find the data in the page cache..
		 */
		hash = page_hash(inode, pos & PAGE_MASK);
		page = __find_page(inode, pos & PAGE_MASK, *hash);
		if (!page)
			goto no_cached_page;

found_page:
/*
 * Try to read ahead only if the current page is filled or being filled.
 * Otherwise, if we were reading ahead, decrease max read ahead size to
 * the minimum value.
 * In this context, that seems to may happen only on some read error or if 
 * the page has been rewritten.
 */
		if (PageUptodate(page) || PageLocked(page))
			page_cache = generic_file_readahead(reada_ok, filp, inode, pos & PAGE_MASK, page, page_cache);
		else if (reada_ok && filp->f_ramax > MIN_READAHEAD)
				filp->f_ramax = MIN_READAHEAD;

		wait_on_page(page);

		if (!PageUptodate(page))
			goto page_read_error;

success:
		/*
		 * Ok, we have the page, it's up-to-date and ok,
		 * so now we can finally copy it to user space...
		 */
	{
		unsigned long offset, nr;

		offset = pos & ~PAGE_MASK;
		nr = PAGE_SIZE - offset;
		if (nr > count)
			nr = count;
		if (nr > inode->i_size - pos)
			nr = inode->i_size - pos;
		nr -= copy_to_user(buf, (void *) (page_address(page) + offset), nr);
		release_page(page);
		error = -EFAULT;
		if (!nr)
			break;
		buf += nr;
		pos += nr;
		read += nr;
		count -= nr;
		if (count)
			continue;
		break;
	}

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
		if (!page_cache) {
			page_cache = __get_free_page(GFP_KERNEL);
			/*
			 * That could have slept, so go around to the
			 * very beginning..
			 */
			if (page_cache)
				continue;
			error = -ENOMEM;
			break;
		}

		/*
		 * Ok, add the new page to the hash-queues...
		 */
		page = mem_map + MAP_NR(page_cache);
		page_cache = 0;
		add_to_page_cache(page, inode, pos & PAGE_MASK, hash);

		/*
		 * Error handling is tricky. If we get a read error,
		 * the cached page stays in the cache (but uptodate=0),
		 * and the next process that accesses it will try to
		 * re-read it. This is needed for NFS etc, where the
		 * identity of the reader can decide if we can read the
		 * page or not..
		 */
/*
 * We have to read the page.
 * If we were reading ahead, we had previously tried to read this page,
 * That means that the page has probably been removed from the cache before 
 * the application process needs it, or has been rewritten.
 * Decrease max readahead size to the minimum value in that situation.
 */
		if (reada_ok && filp->f_ramax > MIN_READAHEAD)
			filp->f_ramax = MIN_READAHEAD;

		error = inode->i_op->readpage(inode, page);
		if (!error)
			goto found_page;
		release_page(page);
		break;

page_read_error:
		/*
		 * We found the page, but it wasn't up-to-date.
		 * Try to re-read it _once_. We do this synchronously,
		 * because this happens only if there were errors.
		 */
		error = inode->i_op->readpage(inode, page);
		if (!error) {
			wait_on_page(page);
			if (PageUptodate(page) && !PageError(page))
				goto success;
			error = -EIO; /* Some unspecified error occurred.. */
		}
		release_page(page);
		break;
	}

	*ppos = pos;
	filp->f_reada = 1;
	if (page_cache)
		free_page(page_cache);
	UPDATE_ATIME(inode)
	if (!read)
		read = error;
	return read;
}

/*
 * Semantics for shared and private memory areas are different past the end
 * of the file. A shared mapping past the last page of the file is an error
 * and results in a SIGBUS, while a private mapping just maps in a zero page.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
 *
 * WSH 06/04/97: fixed a memory leak and moved the allocation of new_page
 * ahead of the wait if we're sure to need it.
 */
static unsigned long filemap_nopage(struct vm_area_struct * area, unsigned long address, int no_share)
{
/* XXX:  Check the flushes in this code.  At least sometimes we do
         duplicate flushes. ... */
	unsigned long offset;
	struct page * page, **hash;
	struct inode * inode = area->vm_dentry->d_inode;
	unsigned long old_page, new_page;

	new_page = 0;
	offset = (address & PAGE_MASK) - area->vm_start + area->vm_offset;
	if (offset >= inode->i_size && (area->vm_flags & VM_SHARED) && area->vm_mm == current->mm)
		goto no_page;

	/*
	 * Do we have something in the page cache already?
	 */
	hash = page_hash(inode, offset);
	page = __find_page(inode, offset, *hash);
	if (!page)
		goto no_cached_page;

found_page:
	/*
	 * Ok, found a page in the page cache, now we need to check
	 * that it's up-to-date.  First check whether we'll need an
	 * extra page -- better to overlap the allocation with the I/O.
	 */
	if (no_share && !new_page) {
		new_page = __get_free_page(GFP_KERNEL);
		if (!new_page)
			goto failure;
	}

	if (PageLocked(page))
		goto page_locked_wait;
	if (!PageUptodate(page))
		goto page_read_error;

success:
	/*
	 * Found the page, need to check sharing and possibly
	 * copy it over to another page..
	 */
	old_page = page_address(page);
	if (!no_share) {
		/*
		 * Ok, we can share the cached page directly.. Get rid
		 * of any potential extra pages.
		 */
		if (new_page)
			free_page(new_page);

		flush_page_to_ram(old_page);
		return old_page;
	}

	/*
	 * No sharing ... copy to the new page.
	 */
	copy_page(new_page, old_page);
	flush_page_to_ram(new_page);
	release_page(page);
	return new_page;

no_cached_page:
	new_page = __get_free_page(GFP_KERNEL);
	if (!new_page)
		goto no_page;

	/*
	 * During getting the above page we might have slept,
	 * so we need to re-check the situation with the page
	 * cache.. The page we just got may be useful if we
	 * can't share, so don't get rid of it here.
	 */
	page = find_page(inode, offset);
	if (page)
		goto found_page;

	/*
	 * Now, create a new page-cache page from the page we got
	 */
	page = mem_map + MAP_NR(new_page);
	new_page = 0;
	add_to_page_cache(page, inode, offset, hash);

	if (inode->i_op->readpage(inode, page) != 0)
		goto failure;

	/*
	 * Do a very limited read-ahead if appropriate
	 */
	if (PageLocked(page))
		new_page = try_to_read_ahead(inode, offset + PAGE_SIZE, 0);
	goto found_page;

page_locked_wait:
	__wait_on_page(page);
	if (PageUptodate(page))
		goto success;
	
page_read_error:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	if (inode->i_op->readpage(inode, page) != 0)
		goto failure;
	wait_on_page(page);
	if (PageError(page))
		goto failure;
	if (PageUptodate(page))
		goto success;

	/*
	 * Uhhuh.. Things didn't work out. Return zero to tell the
	 * mm layer so, possibly freeing the page cache page first.
	 */
failure:
	release_page(page);
	if (new_page)
		free_page(new_page);
no_page:
	return 0;
}

/*
 * Tries to write a shared mapped page to its backing store. May return -EIO
 * if the disk is full.
 */
static inline int do_write_page(struct inode * inode, struct file * file,
	const char * page, unsigned long offset)
{
	int retval;
	unsigned long size;
	unsigned long old_fs;

	size = offset + PAGE_SIZE;
	/* refuse to extend file size.. */
	if (S_ISREG(inode->i_mode)) {
		if (size > inode->i_size)
			size = inode->i_size;
		/* Ho humm.. We should have tested for this earlier */
		if (size < offset)
			return -EIO;
	}
	size -= offset;
	old_fs = get_fs();
	set_fs(KERNEL_DS);
	retval = -EIO;
	if (size == file->f_op->write(file, (const char *) page,
				      size, &file->f_pos))
		retval = 0;
	set_fs(old_fs);
	return retval;
}

static int filemap_write_page(struct vm_area_struct * vma,
	unsigned long offset,
	unsigned long page)
{
	int result;
	struct file file;
	struct dentry * dentry;
	struct inode * inode;
	struct buffer_head * bh;

	bh = mem_map[MAP_NR(page)].buffers;
	if (bh) {
		/* whee.. just mark the buffer heads dirty */
		struct buffer_head * tmp = bh;
		do {
			/*
			 * WSH: There's a race here: mark_buffer_dirty()
			 * could block, and the buffers aren't pinned down.
			 */
			mark_buffer_dirty(tmp, 0);
			tmp = tmp->b_this_page;
		} while (tmp != bh);
		return 0;
	}

	dentry = vma->vm_dentry;
	inode = dentry->d_inode;
	file.f_op = inode->i_op->default_file_ops;
	if (!file.f_op->write)
		return -EIO;
	file.f_mode = 3;
	file.f_flags = 0;
	file.f_count = 1;
	file.f_dentry = dentry;
	file.f_pos = offset;
	file.f_reada = 0;

	/*
	 * If a task terminates while we're swapping the page, the vma and
	 * and dentry could be released ... increment the count to be safe.
	 */
	dget(dentry);
	down(&inode->i_sem);
	result = do_write_page(inode, &file, (const char *) page, offset);
	up(&inode->i_sem);
	dput(dentry);
	return result;
}


/*
 * Swapping to a shared file: while we're busy writing out the page
 * (and the page still exists in memory), we save the page information
 * in the page table, so that "filemap_swapin()" can re-use the page
 * immediately if it is called while we're busy swapping it out..
 *
 * Once we've written it all out, we mark the page entry "empty", which
 * will result in a normal page-in (instead of a swap-in) from the now
 * up-to-date disk file.
 */
int filemap_swapout(struct vm_area_struct * vma,
	unsigned long offset,
	pte_t *page_table)
{
	int error;
	unsigned long page = pte_page(*page_table);
	unsigned long entry = SWP_ENTRY(SHM_SWP_TYPE, MAP_NR(page));

	flush_cache_page(vma, (offset + vma->vm_start - vma->vm_offset));
	set_pte(page_table, __pte(entry));
	flush_tlb_page(vma, (offset + vma->vm_start - vma->vm_offset));
	error = filemap_write_page(vma, offset, page);
	if (pte_val(*page_table) == entry)
		pte_clear(page_table);
	return error;
}

/*
 * filemap_swapin() is called only if we have something in the page
 * tables that is non-zero (but not present), which we know to be the
 * page index of a page that is busy being swapped out (see above).
 * So we just use it directly..
 */
static pte_t filemap_swapin(struct vm_area_struct * vma,
	unsigned long offset,
	unsigned long entry)
{
	unsigned long page = SWP_OFFSET(entry);

	atomic_inc(&mem_map[page].count);
	page = (page << PAGE_SHIFT) + PAGE_OFFSET;
	return mk_pte(page,vma->vm_page_prot);
}


static inline int filemap_sync_pte(pte_t * ptep, struct vm_area_struct *vma,
	unsigned long address, unsigned int flags)
{
	pte_t pte = *ptep;
	unsigned long page;
	int error;

	if (!(flags & MS_INVALIDATE)) {
		if (!pte_present(pte))
			return 0;
		if (!pte_dirty(pte))
			return 0;
		flush_page_to_ram(pte_page(pte));
		flush_cache_page(vma, address);
		set_pte(ptep, pte_mkclean(pte));
		flush_tlb_page(vma, address);
		page = pte_page(pte);
		atomic_inc(&mem_map[MAP_NR(page)].count);
	} else {
		if (pte_none(pte))
			return 0;
		flush_cache_page(vma, address);
		pte_clear(ptep);
		flush_tlb_page(vma, address);
		if (!pte_present(pte)) {
			swap_free(pte_val(pte));
			return 0;
		}
		page = pte_page(pte);
		if (!pte_dirty(pte) || flags == MS_INVALIDATE) {
			free_page(page);
			return 0;
		}
	}
	error = filemap_write_page(vma, address - vma->vm_start + vma->vm_offset, page);
	free_page(page);
	return error;
}

static inline int filemap_sync_pte_range(pmd_t * pmd,
	unsigned long address, unsigned long size, 
	struct vm_area_struct *vma, unsigned long offset, unsigned int flags)
{
	pte_t * pte;
	unsigned long end;
	int error;

	if (pmd_none(*pmd))
		return 0;
	if (pmd_bad(*pmd)) {
		printk("filemap_sync_pte_range: bad pmd (%08lx)\n", pmd_val(*pmd));
		pmd_clear(pmd);
		return 0;
	}
	pte = pte_offset(pmd, address);
	offset += address & PMD_MASK;
	address &= ~PMD_MASK;
	end = address + size;
	if (end > PMD_SIZE)
		end = PMD_SIZE;
	error = 0;
	do {
		error |= filemap_sync_pte(pte, vma, address + offset, flags);
		address += PAGE_SIZE;
		pte++;
	} while (address < end);
	return error;
}

static inline int filemap_sync_pmd_range(pgd_t * pgd,
	unsigned long address, unsigned long size, 
	struct vm_area_struct *vma, unsigned int flags)
{
	pmd_t * pmd;
	unsigned long offset, end;
	int error;

	if (pgd_none(*pgd))
		return 0;
	if (pgd_bad(*pgd)) {
		printk("filemap_sync_pmd_range: bad pgd (%08lx)\n", pgd_val(*pgd));
		pgd_clear(pgd);
		return 0;
	}
	pmd = pmd_offset(pgd, address);
	offset = address & PGDIR_MASK;
	address &= ~PGDIR_MASK;
	end = address + size;
	if (end > PGDIR_SIZE)
		end = PGDIR_SIZE;
	error = 0;
	do {
		error |= filemap_sync_pte_range(pmd, address, end - address, vma, offset, flags);
		address = (address + PMD_SIZE) & PMD_MASK;
		pmd++;
	} while (address < end);
	return error;
}

static int filemap_sync(struct vm_area_struct * vma, unsigned long address,
	size_t size, unsigned int flags)
{
	pgd_t * dir;
	unsigned long end = address + size;
	int error = 0;

	dir = pgd_offset(vma->vm_mm, address);
	flush_cache_range(vma->vm_mm, end - size, end);
	while (address < end) {
		error |= filemap_sync_pmd_range(dir, address, end - address, vma, flags);
		address = (address + PGDIR_SIZE) & PGDIR_MASK;
		dir++;
	}
	flush_tlb_range(vma->vm_mm, end - size, end);
	return error;
}

/*
 * This handles (potentially partial) area unmaps..
 */
static void filemap_unmap(struct vm_area_struct *vma, unsigned long start, size_t len)
{
	filemap_sync(vma, start, len, MS_ASYNC);
}

/*
 * Shared mappings need to be able to do the right thing at
 * close/unmap/sync. They will also use the private file as
 * backing-store for swapping..
 */
static struct vm_operations_struct file_shared_mmap = {
	NULL,			/* no special open */
	NULL,			/* no special close */
	filemap_unmap,		/* unmap - we need to sync the pages */
	NULL,			/* no special protect */
	filemap_sync,		/* sync */
	NULL,			/* advise */
	filemap_nopage,		/* nopage */
	NULL,			/* wppage */
	filemap_swapout,	/* swapout */
	filemap_swapin,		/* swapin */
};

/*
 * Private mappings just need to be able to load in the map.
 *
 * (This is actually used for shared mappings as well, if we
 * know they can't ever get write permissions..)
 */
static struct vm_operations_struct file_private_mmap = {
	NULL,			/* open */
	NULL,			/* close */
	NULL,			/* unmap */
	NULL,			/* protect */
	NULL,			/* sync */
	NULL,			/* advise */
	filemap_nopage,		/* nopage */
	NULL,			/* wppage */
	NULL,			/* swapout */
	NULL,			/* swapin */
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct vm_operations_struct * ops;
	struct inode *inode = file->f_dentry->d_inode;

	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) {
		ops = &file_shared_mmap;
		/* share_page() can only guarantee proper page sharing if
		 * the offsets are all page aligned. */
		if (vma->vm_offset & (PAGE_SIZE - 1))
			return -EINVAL;
	} else {
		ops = &file_private_mmap;
		if (vma->vm_offset & (inode->i_sb->s_blocksize - 1))
			return -EINVAL;
	}
	if (!inode->i_sb || !S_ISREG(inode->i_mode))
		return -EACCES;
	if (!inode->i_op || !inode->i_op->readpage)
		return -ENOEXEC;
	UPDATE_ATIME(inode);
	vma->vm_dentry = dget(file->f_dentry);
	vma->vm_ops = ops;
	return 0;
}


/*
 * The msync() system call.
 */

static int msync_interval(struct vm_area_struct * vma,
	unsigned long start, unsigned long end, int flags)
{
	if (vma->vm_dentry && vma->vm_ops && vma->vm_ops->sync) {
		int error;
		error = vma->vm_ops->sync(vma, start, end-start, flags);
		if (!error && (flags & MS_SYNC)) {
			struct dentry * dentry = vma->vm_dentry;
			if (dentry) {
				struct inode * inode = dentry->d_inode;
				down(&inode->i_sem);
				error = file_fsync(NULL,dentry);
				up(&inode->i_sem);
			}
		}
		return error;
	}
	return 0;
}

asmlinkage int sys_msync(unsigned long start, size_t len, int flags)
{
	unsigned long end;
	struct vm_area_struct * vma;
	int unmapped_error, error = -EINVAL;

	lock_kernel();
	if (start & ~PAGE_MASK)
		goto out;
	len = (len + ~PAGE_MASK) & PAGE_MASK;
	end = start + len;
	if (end < start)
		goto out;
	if (flags & ~(MS_ASYNC | MS_INVALIDATE | MS_SYNC))
		goto out;
	error = 0;
	if (end == start)
		goto out;
	/*
	 * If the interval [start,end) covers some unmapped address ranges,
	 * just ignore them, but return -EFAULT at the end.
	 */
	vma = find_vma(current->mm, start);
	unmapped_error = 0;
	for (;;) {
		/* Still start < end. */
		error = -EFAULT;
		if (!vma)
			goto out;
		/* Here start < vma->vm_end. */
		if (start < vma->vm_start) {
			unmapped_error = -EFAULT;
			start = vma->vm_start;
		}
		/* Here vma->vm_start <= start < vma->vm_end. */
		if (end <= vma->vm_end) {
			if (start < end) {
				error = msync_interval(vma, start, end, flags);
				if (error)
					goto out;
			}
			error = unmapped_error;
			goto out;
		}
		/* Here vma->vm_start <= start < vma->vm_end < end. */
		error = msync_interval(vma, start, vma->vm_end, flags);
		if (error)
			goto out;
		start = vma->vm_end;
		vma = vma->vm_next;
	}
out:
	unlock_kernel();
	return error;
}

/*
 * Write to a file through the page cache. This is mainly for the
 * benefit of NFS and possibly other network-based file systems.
 *
 * We currently put everything into the page cache prior to writing it.
 * This is not a problem when writing full pages. With partial pages,
 * however, we first have to read the data into the cache, then
 * dirty the page, and finally schedule it for writing. Alternatively, we
 * could write-through just the portion of data that would go into that
 * page, but that would kill performance for applications that write data
 * line by line, and it's prone to race conditions.
 *
 * Note that this routine doesn't try to keep track of dirty pages. Each
 * file system has to do this all by itself, unfortunately.
 *							okir@monad.swb.de
 */
ssize_t
generic_file_write(struct file *file, const char *buf,
		   size_t count, loff_t *ppos)
{
	struct inode	*inode = file->f_dentry->d_inode; 
	struct page	*page, **hash;
	unsigned long	page_cache = 0;
	unsigned long	pgpos, offset;
	unsigned long	bytes, written;
	unsigned long	pos;
	long		status, sync, didread;

	if (!inode->i_op || !inode->i_op->updatepage)
		return -EIO;

	sync    = file->f_flags & O_SYNC;
	pos     = *ppos;
	written = 0;
	status  = 0;

	if (file->f_flags & O_APPEND)
		pos = inode->i_size;

	while (count) {
		/*
		 * Try to find the page in the cache. If it isn't there,
		 * allocate a free page.
		 */
		offset = (pos & ~PAGE_MASK);
		pgpos = pos & PAGE_MASK;

		if ((bytes = PAGE_SIZE - offset) > count)
			bytes = count;

		hash = page_hash(inode, pgpos);
		if (!(page = __find_page(inode, pgpos, *hash))) {
			if (!page_cache) {
				page_cache = __get_free_page(GFP_KERNEL);
				if (!page_cache) {
					status = -ENOMEM;
					break;
				}
				continue;
			}
			page = mem_map + MAP_NR(page_cache);
			add_to_page_cache(page, inode, pgpos, hash);
			page_cache = 0;
		}

		/*
		 * WSH 06/05/97: restructured slightly to make sure we release
		 * the page on an error exit.  Removed explicit setting of
		 * PG_locked, as that's handled below the i_op->xxx interface.
		 */
		didread = 0;
page_wait:
		wait_on_page(page);

		/*
		 * If the page is not uptodate, and we're writing less
		 * than a full page of data, we may have to read it first.
		 * However, don't bother with reading the page when it's
		 * after the current end of file.
		 */
		if (!PageUptodate(page)) {
			if (bytes < PAGE_SIZE && pgpos < inode->i_size) {
				if (didread < 2)
				    status = inode->i_op->readpage(inode, page);
				else 
				    status = -EIO; /* two tries ... error out */
				if (status < 0)
					goto done_with_page;
				didread++;
				goto page_wait;
			}
			set_bit(PG_uptodate, &page->flags);
		}

		/* Alright, the page is there.  Now update it. */
		status = inode->i_op->updatepage(inode, page, buf,
							offset, bytes, sync);
done_with_page:
		__free_page(page);
		if (status < 0)
			break;

		written += status;
		count -= status;
		pos += status;
		buf += status;
	}
	*ppos = pos;
	if (pos > inode->i_size)
		inode->i_size = pos;

	if (page_cache)
		free_page(page_cache);
	if (written)
		return written;
	return status;
}

/*
 * Support routines for directory cacheing using the page cache.
 */

/*
 * Finds the page at the specified offset, installing a new page
 * if requested.  The count is incremented and the page is locked.
 *
 * Note: we don't have to worry about races here, as the caller
 * is holding the inode semaphore.
 */
unsigned long get_cached_page(struct inode * inode, unsigned long offset,
				int new)
{
	struct page * page;
	struct page ** hash;
	unsigned long page_cache;

	hash = page_hash(inode, offset);
	page = __find_page(inode, offset, *hash);
	if (!page) {
		if (!new)
			goto out;
		page_cache = get_free_page(GFP_KERNEL);
		if (!page_cache)
			goto out;
		page = mem_map + MAP_NR(page_cache);
		add_to_page_cache(page, inode, offset, hash);
	}
	if (atomic_read(&page->count) != 2)
		printk("get_cached_page: page count=%d\n",
			atomic_read(&page->count));
	if (test_bit(PG_locked, &page->flags))
		printk("get_cached_page: page already locked!\n");
	set_bit(PG_locked, &page->flags);

out:
	return page_address(page);
}

/*
 * Unlock and free a page.
 */
void put_cached_page(unsigned long addr)
{
	struct page * page = mem_map + MAP_NR(addr);

	if (!test_bit(PG_locked, &page->flags))
		printk("put_cached_page: page not locked!\n");
	if (atomic_read(&page->count) != 2)
		printk("put_cached_page: page count=%d\n", 
			atomic_read(&page->count));
	clear_bit(PG_locked, &page->flags);
	wake_up(&page->wait);
	__free_page(page);
}