summaryrefslogtreecommitdiffstats
path: root/mm/page_io.c
blob: 2226c2c9da7b41bc9b1649180e13b42fe27ce895 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*
 *  linux/mm/page_io.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, 
 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 */

#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/locks.h>
#include <linux/swapctl.h>

#include <asm/pgtable.h>

static DECLARE_WAIT_QUEUE_HEAD(lock_queue);

/*
 * Reads or writes a swap page.
 * wait=1: start I/O and wait for completion. wait=0: start asynchronous I/O.
 *
 * Important prevention of race condition: the caller *must* atomically 
 * create a unique swap cache entry for this swap page before calling
 * rw_swap_page, and must lock that page.  By ensuring that there is a
 * single page of memory reserved for the swap entry, the normal VM page
 * lock on that page also doubles as a lock on swap entries.  Having only
 * one lock to deal with per swap entry (rather than locking swap and memory
 * independently) also makes it easier to make certain swapping operations
 * atomic, which is particularly important when we are trying to ensure 
 * that shared pages stay shared while being swapped.
 */

static void rw_swap_page_base(int rw, unsigned long entry, struct page *page, int wait)
{
	unsigned long type, offset;
	struct swap_info_struct * p;
	int zones[PAGE_SIZE/512];
	int zones_used;
	kdev_t dev = 0;
	int block_size;

#ifdef DEBUG_SWAP
	printk ("DebugVM: %s_swap_page entry %08lx, page %p (count %d), %s\n",
		(rw == READ) ? "read" : "write", 
		entry, (char *) page_address(page), page_count(page),
		wait ? "wait" : "nowait");
#endif

	type = SWP_TYPE(entry);
	if (type >= nr_swapfiles) {
		printk("Internal error: bad swap-device\n");
		return;
	}

	/* Don't allow too many pending pages in flight.. */
	if (atomic_read(&nr_async_pages) > pager_daemon.swap_cluster)
		wait = 1;

	p = &swap_info[type];
	offset = SWP_OFFSET(entry);
	if (offset >= p->max) {
		printk("rw_swap_page: weirdness\n");
		return;
	}
	if (p->swap_map && !p->swap_map[offset]) {
		printk(KERN_ERR "rw_swap_page: "
			"Trying to %s unallocated swap (%08lx)\n", 
			(rw == READ) ? "read" : "write", entry);
		return;
	}
	if (!(p->flags & SWP_USED)) {
		printk(KERN_ERR "rw_swap_page: "
			"Trying to swap to unused swap-device\n");
		return;
	}

	if (!PageLocked(page)) {
		printk(KERN_ERR "VM: swap page is unlocked\n");
		return;
	}

	if (PageSwapCache(page)) {
		/* Make sure we are the only process doing I/O with this swap page. */
		while (test_and_set_bit(offset,p->swap_lockmap)) {
			run_task_queue(&tq_disk);
			sleep_on(&lock_queue);
		}

		/* 
		 * Make sure that we have a swap cache association for this
		 * page.  We need this to find which swap page to unlock once
		 * the swap IO has completed to the physical page.  If the page
		 * is not already in the cache, just overload the offset entry
		 * as if it were: we are not allowed to manipulate the inode
		 * hashing for locked pages.
		 */
		if (page->offset != entry) {
			printk ("swap entry mismatch");
			return;
		}
	}
	if (rw == READ) {
		ClearPageUptodate(page);
		kstat.pswpin++;
	} else
		kstat.pswpout++;

	get_page(page);
	if (p->swap_device) {
		zones[0] = offset;
		zones_used = 1;
		dev = p->swap_device;
		block_size = PAGE_SIZE;
	} else if (p->swap_file) {
		struct inode *swapf = p->swap_file->d_inode;
		int i;
		if (swapf->i_op->bmap == NULL
			&& swapf->i_op->smap != NULL){
			/*
				With MS-DOS, we use msdos_smap which returns
				a sector number (not a cluster or block number).
				It is a patch to enable the UMSDOS project.
				Other people are working on better solution.

				It sounds like ll_rw_swap_file defined
				its operation size (sector size) based on
				PAGE_SIZE and the number of blocks to read.
				So using bmap or smap should work even if
				smap will require more blocks.
			*/
			int j;
			unsigned int block = offset << 3;

			for (i=0, j=0; j< PAGE_SIZE ; i++, j += 512){
				if (!(zones[i] = swapf->i_op->smap(swapf,block++))) {
					printk("rw_swap_page: bad swap file\n");
					return;
				}
			}
			block_size = 512;
		}else{
			int j;
			unsigned int block = offset
				<< (PAGE_SHIFT - swapf->i_sb->s_blocksize_bits);

			block_size = swapf->i_sb->s_blocksize;
			for (i=0, j=0; j< PAGE_SIZE ; i++, j += block_size)
				if (!(zones[i] = bmap(swapf,block++))) {
					printk("rw_swap_page: bad swap file\n");
					return;
				}
			zones_used = i;
			dev = swapf->i_dev;
		}
	} else {
		printk(KERN_ERR "rw_swap_page: no swap file or device\n");
		/* Do some cleaning up so if this ever happens we can hopefully
		 * trigger controlled shutdown.
		 */
		if (PageSwapCache(page)) {
			if (!test_and_clear_bit(offset,p->swap_lockmap))
				printk("swap_after_unlock_page: lock already cleared\n");
			wake_up(&lock_queue);
		}
		put_page(page);
		return;
	}
 	if (!wait) {
 		set_bit(PG_decr_after, &page->flags);
 		atomic_inc(&nr_async_pages);
 	}
 	if (PageSwapCache(page)) {
 		/* only lock/unlock swap cache pages! */
 		set_bit(PG_swap_unlock_after, &page->flags);
 	}
 	set_bit(PG_free_after, &page->flags);

 	/* block_size == PAGE_SIZE/zones_used */
 	brw_page(rw, page, dev, zones, block_size, 0);

 	/* Note! For consistency we do all of the logic,
 	 * decrementing the page count, and unlocking the page in the
 	 * swap lock map - in the IO completion handler.
 	 */
 	if (!wait) {
 		return;
	}
 	wait_on_page(page);
	/* This shouldn't happen, but check to be sure. */
	if (page_count(page) == 0)
		printk(KERN_ERR "rw_swap_page: page unused while waiting!\n");

#ifdef DEBUG_SWAP
	printk ("DebugVM: %s_swap_page finished on page %p (count %d)\n",
		(rw == READ) ? "read" : "write", 
		(char *) page_address(page), 
		page_count(page));
#endif
}

/* Note: We could remove this totally asynchronous function,
 * and improve swap performance, and remove the need for the swap lock map,
 * by not removing pages from the swap cache until after I/O has been
 * processed and letting remove_from_page_cache decrement the swap count
 * just before it removes the page from the page cache.
 */
/* This is run when asynchronous page I/O has completed. */
void swap_after_unlock_page (unsigned long entry)
{
	unsigned long type, offset;
	struct swap_info_struct * p;

	type = SWP_TYPE(entry);
	if (type >= nr_swapfiles) {
		printk("swap_after_unlock_page: bad swap-device\n");
		return;
	}
	p = &swap_info[type];
	offset = SWP_OFFSET(entry);
	if (offset >= p->max) {
		printk("swap_after_unlock_page: weirdness\n");
		return;
	}
	if (!test_and_clear_bit(offset,p->swap_lockmap))
		printk("swap_after_unlock_page: lock already cleared\n");
	wake_up(&lock_queue);
}

/* A simple wrapper so the base function doesn't need to enforce
 * that all swap pages go through the swap cache!
 */
void rw_swap_page(int rw, unsigned long entry, char *buf, int wait)
{
	struct page *page = mem_map + MAP_NR(buf);

	if (page->inode && page->inode != &swapper_inode)
		PAGE_BUG(page);

	/*
	 * Make sure that we have a swap cache association for this
	 * page.  We need this to find which swap page to unlock once
	 * the swap IO has completed to the physical page.  If the page
	 * is not already in the cache, just overload the offset entry
	 * as if it were: we are not allowed to manipulate the inode
	 * hashing for locked pages.
	 */
	if (!PageSwapCache(page)) {
		printk("VM: swap page is not in swap cache\n");
		return;
	}
	if (page->offset != entry) {
		printk ("swap entry mismatch");
		return;
	}
	rw_swap_page_base(rw, entry, page, wait);
}

/*
 * Setting up a new swap file needs a simple wrapper just to read the 
 * swap signature.  SysV shared memory also needs a simple wrapper.
 */
void rw_swap_page_nocache(int rw, unsigned long entry, char *buffer)
{
	struct page *page;
	
	page = mem_map + MAP_NR((unsigned long) buffer);

	if (TryLockPage(page))
		PAGE_BUG(page);
	if (test_and_set_bit(PG_swap_cache, &page->flags))
		PAGE_BUG(page);
	if (page->inode)
		PAGE_BUG(page);
	get_page(page);		/* Protect from shrink_mmap() */
	page->inode = &swapper_inode;
	page->offset = entry;
	rw_swap_page(rw, entry, buffer, 1);

	/*
	 * and now remove it from the pagecache ...
	 */
	if (TryLockPage(page))
		PAGE_BUG(page);
	PageClearSwapCache(page);
	remove_inode_page(page);
	page_cache_release(page);
	UnlockPage(page);
}

/*
 * shmfs needs a version that doesn't put the page in the page cache!
 * The swap lock map insists that pages be in the page cache!
 * Therefore we can't use it.  Later when we can remove the need for the
 * lock map and we can reduce the number of functions exported.
 */
void rw_swap_page_nolock(int rw, unsigned long entry, char *buffer, int wait)
{
	struct page *page = mem_map + MAP_NR((unsigned long) buffer);
	
	if (!PageLocked(page)) {
		printk("VM: rw_swap_page_nolock: page not locked!\n");
		return;
	}
	if (PageSwapCache(page)) {
		printk ("VM: rw_swap_page_nolock: page in swap cache!\n");
		return;
	}
	rw_swap_page_base(rw, entry, page, wait);
}