1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
/*
* linux/mm/page_io.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Swap reorganised 29.12.95,
* Asynchronous swapping added 30.12.95. Stephen Tweedie
* Removed race in async swapping. 14.4.1996. Bruno Haible
* Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
* Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
*/
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/locks.h>
#include <linux/swapctl.h>
#include <asm/pgtable.h>
/*
* Reads or writes a swap page.
* wait=1: start I/O and wait for completion. wait=0: start asynchronous I/O.
*
* Important prevention of race condition: the caller *must* atomically
* create a unique swap cache entry for this swap page before calling
* rw_swap_page, and must lock that page. By ensuring that there is a
* single page of memory reserved for the swap entry, the normal VM page
* lock on that page also doubles as a lock on swap entries. Having only
* one lock to deal with per swap entry (rather than locking swap and memory
* independently) also makes it easier to make certain swapping operations
* atomic, which is particularly important when we are trying to ensure
* that shared pages stay shared while being swapped.
*/
static void rw_swap_page_base(int rw, unsigned long entry, struct page *page, int wait)
{
unsigned long type, offset;
struct swap_info_struct * p;
int zones[PAGE_SIZE/512];
int zones_used;
kdev_t dev = 0;
int block_size;
#ifdef DEBUG_SWAP
printk ("DebugVM: %s_swap_page entry %08lx, page %p (count %d), %s\n",
(rw == READ) ? "read" : "write",
entry, (char *) page_address(page), page_count(page),
wait ? "wait" : "nowait");
#endif
type = SWP_TYPE(entry);
if (type >= nr_swapfiles) {
printk("Internal error: bad swap-device\n");
return;
}
/* Don't allow too many pending pages in flight.. */
if (atomic_read(&nr_async_pages) > pager_daemon.swap_cluster)
wait = 1;
p = &swap_info[type];
offset = SWP_OFFSET(entry);
if (offset >= p->max) {
printk("rw_swap_page: weirdness\n");
return;
}
if (p->swap_map && !p->swap_map[offset]) {
printk(KERN_ERR "rw_swap_page: "
"Trying to %s unallocated swap (%08lx)\n",
(rw == READ) ? "read" : "write", entry);
return;
}
if (!(p->flags & SWP_USED)) {
printk(KERN_ERR "rw_swap_page: "
"Trying to swap to unused swap-device\n");
return;
}
if (!PageLocked(page)) {
printk(KERN_ERR "VM: swap page is unlocked\n");
return;
}
if (rw == READ) {
ClearPageUptodate(page);
kstat.pswpin++;
} else
kstat.pswpout++;
if (p->swap_device) {
zones[0] = offset;
zones_used = 1;
dev = p->swap_device;
block_size = PAGE_SIZE;
} else if (p->swap_file) {
struct inode *swapf = p->swap_file->d_inode;
int i;
int j;
unsigned int block = offset
<< (PAGE_SHIFT - swapf->i_sb->s_blocksize_bits);
block_size = swapf->i_sb->s_blocksize;
for (i=0, j=0; j< PAGE_SIZE ; i++, j += block_size)
if (!(zones[i] = bmap(swapf,block++))) {
printk("rw_swap_page: bad swap file\n");
return;
}
zones_used = i;
dev = swapf->i_dev;
} else {
printk(KERN_ERR "rw_swap_page: no swap file or device\n");
return;
}
if (!wait) {
set_bit(PG_decr_after, &page->flags);
atomic_inc(&nr_async_pages);
}
/* block_size == PAGE_SIZE/zones_used */
brw_page(rw, page, dev, zones, block_size, 0);
/* Note! For consistency we do all of the logic,
* decrementing the page count, and unlocking the page in the
* swap lock map - in the IO completion handler.
*/
if (!wait) {
return;
}
wait_on_page(page);
/* This shouldn't happen, but check to be sure. */
if (page_count(page) == 0)
printk(KERN_ERR "rw_swap_page: page unused while waiting!\n");
#ifdef DEBUG_SWAP
printk ("DebugVM: %s_swap_page finished on page %p (count %d)\n",
(rw == READ) ? "read" : "write",
(char *) page_address(page),
page_count(page));
#endif
}
/*
* A simple wrapper so the base function doesn't need to enforce
* that all swap pages go through the swap cache! We verify that:
* - the page is locked
* - it's marked as being swap-cache
* - it's associated with the swap inode
*/
void rw_swap_page(int rw, struct page *page, int wait)
{
unsigned long entry = page->offset;
if (!PageLocked(page))
PAGE_BUG(page);
if (!PageSwapCache(page))
PAGE_BUG(page);
if (page->inode != &swapper_inode)
PAGE_BUG(page);
rw_swap_page_base(rw, entry, page, wait);
}
/*
* The swap lock map insists that pages be in the page cache!
* Therefore we can't use it. Later when we can remove the need for the
* lock map and we can reduce the number of functions exported.
*/
void rw_swap_page_nolock(int rw, unsigned long entry, char *buf, int wait)
{
struct page *page = mem_map + MAP_NR(buf);
if (!PageLocked(page))
PAGE_BUG(page);
if (PageSwapCache(page))
PAGE_BUG(page);
rw_swap_page_base(rw, entry, page, wait);
}
|